\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter

Abstract Related Papers Cited by
  • A nonlinear elliptic equation with $p$-Laplacian, concave-convex reaction term depending on a parameter $\lambda>0$, and homogeneous boundary condition, is investigated. A bifurcation result, which describes the set of positive solutions as $\lambda$ varies, is obtained through variational methods combined with truncation and comparison techniques.
    Mathematics Subject Classification: Primary: 35J25, 35J92; Secondary: 49J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008).

    [2]

    A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078.

    [3]

    D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator, Comm. Partial Differential Equations, 31 (2006), 849-865.doi: 10.1080/03605300500394447.

    [4]

    D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity, Bull. Austral. Math. Soc., 77 (2008), 285-303.doi: 10.1017/S0004972708000282.

    [5]

    L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal., 24 (1995), 1639-1648.doi: 10.1016/0362-546X(94)E0054-K.

    [6]

    G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 737-752.doi: 10.1017/S0308210509000845.

    [7]

    L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis," Ser. Math. Anal. Appl., 9, Chapman and Hall/CRC Press, Boca Raton, 2006.

    [8]

    L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Ser. Math. Anal. Appl., 8, Chapman and Hall/CRC Press, Boca Raton, 2005.

    [9]

    J. P. Garcia Azorero, J. J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2 (2000), 385-404.doi: 10.1142/S0219199700000190.

    [10]

    M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902.doi: 10.1016/0362-546X(89)90020-5.

    [11]

    S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J., 62 (2010), 137-162.doi: 10.2748/tmj/1270041030.

    [12]

    An Lê, Eigenvalue problems for the $p$-Laplacian, Nonlinear Anal., 64 (2006), 1057-1099.doi: 10.1016/j.na.2005.05.056.

    [13]

    S. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities, J. Differential Equations, 185 (2002), 200-224.doi: 10.1006/jdeq.2001.4167.

    [14]

    G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.doi: 10.1016/j.na.2010.02.037.

    [15]

    P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) +\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.doi: 10.1090/S0002-9939-1990-1007505-7.

    [16]

    O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz condition, J. Differential Equations, 245 (2008), 3628-3638.doi: 10.1016/j.jde.2008.02.035.

    [17]

    I. Peral, Some results on quasilinear elliptic equations: growth versus shape, in "Nonlinear Functional Analysis and Applications to Differential Equations (Trieste 1997)" (A. Ambrosetti, K.-C. Chang and I. Ekeland eds.), World Sci. Publ., River Edge, NJ, (1998), 153-202.

    [18]

    J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.doi: 10.1007/BF01449041.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(273) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return