Citation: |
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008). |
[2] |
A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078. |
[3] |
D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator, Comm. Partial Differential Equations, 31 (2006), 849-865.doi: 10.1080/03605300500394447. |
[4] |
D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity, Bull. Austral. Math. Soc., 77 (2008), 285-303.doi: 10.1017/S0004972708000282. |
[5] |
L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal., 24 (1995), 1639-1648.doi: 10.1016/0362-546X(94)E0054-K. |
[6] |
G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 737-752.doi: 10.1017/S0308210509000845. |
[7] |
L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis," Ser. Math. Anal. Appl., 9, Chapman and Hall/CRC Press, Boca Raton, 2006. |
[8] |
L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Ser. Math. Anal. Appl., 8, Chapman and Hall/CRC Press, Boca Raton, 2005. |
[9] |
J. P. Garcia Azorero, J. J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2 (2000), 385-404.doi: 10.1142/S0219199700000190. |
[10] |
M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902.doi: 10.1016/0362-546X(89)90020-5. |
[11] |
S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J., 62 (2010), 137-162.doi: 10.2748/tmj/1270041030. |
[12] |
An Lê, Eigenvalue problems for the $p$-Laplacian, Nonlinear Anal., 64 (2006), 1057-1099.doi: 10.1016/j.na.2005.05.056. |
[13] |
S. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities, J. Differential Equations, 185 (2002), 200-224.doi: 10.1006/jdeq.2001.4167. |
[14] |
G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.doi: 10.1016/j.na.2010.02.037. |
[15] |
P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) +\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.doi: 10.1090/S0002-9939-1990-1007505-7. |
[16] |
O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz condition, J. Differential Equations, 245 (2008), 3628-3638.doi: 10.1016/j.jde.2008.02.035. |
[17] |
I. Peral, Some results on quasilinear elliptic equations: growth versus shape, in "Nonlinear Functional Analysis and Applications to Differential Equations (Trieste 1997)" (A. Ambrosetti, K.-C. Chang and I. Ekeland eds.), World Sci. Publ., River Edge, NJ, (1998), 153-202. |
[18] |
J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.doi: 10.1007/BF01449041. |