-
Previous Article
Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity
- CPAA Home
- This Issue
-
Next Article
Some results on two-dimensional Hénon equation with large exponent in nonlinearity
Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter
1. | Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania |
2. | Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780 |
References:
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008). |
[2] |
A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[3] |
D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator, Comm. Partial Differential Equations, 31 (2006), 849-865.
doi: 10.1080/03605300500394447. |
[4] |
D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity, Bull. Austral. Math. Soc., 77 (2008), 285-303.
doi: 10.1017/S0004972708000282. |
[5] |
L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal., 24 (1995), 1639-1648.
doi: 10.1016/0362-546X(94)E0054-K. |
[6] |
G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 737-752.
doi: 10.1017/S0308210509000845. |
[7] |
L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis," Ser. Math. Anal. Appl., 9, Chapman and Hall/CRC Press, Boca Raton, 2006. |
[8] |
L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Ser. Math. Anal. Appl., 8, Chapman and Hall/CRC Press, Boca Raton, 2005. |
[9] |
J. P. Garcia Azorero, J. J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2 (2000), 385-404.
doi: 10.1142/S0219199700000190. |
[10] |
M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902.
doi: 10.1016/0362-546X(89)90020-5. |
[11] |
S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J., 62 (2010), 137-162.
doi: 10.2748/tmj/1270041030. |
[12] |
An Lê, Eigenvalue problems for the $p$-Laplacian, Nonlinear Anal., 64 (2006), 1057-1099.
doi: 10.1016/j.na.2005.05.056. |
[13] |
S. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities, J. Differential Equations, 185 (2002), 200-224.
doi: 10.1006/jdeq.2001.4167. |
[14] |
G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037. |
[15] |
P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) +\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.
doi: 10.1090/S0002-9939-1990-1007505-7. |
[16] |
O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz condition, J. Differential Equations, 245 (2008), 3628-3638.
doi: 10.1016/j.jde.2008.02.035. |
[17] |
I. Peral, Some results on quasilinear elliptic equations: growth versus shape, in "Nonlinear Functional Analysis and Applications to Differential Equations (Trieste 1997)" (A. Ambrosetti, K.-C. Chang and I. Ekeland eds.), World Sci. Publ., River Edge, NJ, (1998), 153-202. |
[18] |
J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.
doi: 10.1007/BF01449041. |
show all references
References:
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008). |
[2] |
A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[3] |
D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator, Comm. Partial Differential Equations, 31 (2006), 849-865.
doi: 10.1080/03605300500394447. |
[4] |
D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity, Bull. Austral. Math. Soc., 77 (2008), 285-303.
doi: 10.1017/S0004972708000282. |
[5] |
L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal., 24 (1995), 1639-1648.
doi: 10.1016/0362-546X(94)E0054-K. |
[6] |
G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 737-752.
doi: 10.1017/S0308210509000845. |
[7] |
L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis," Ser. Math. Anal. Appl., 9, Chapman and Hall/CRC Press, Boca Raton, 2006. |
[8] |
L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Ser. Math. Anal. Appl., 8, Chapman and Hall/CRC Press, Boca Raton, 2005. |
[9] |
J. P. Garcia Azorero, J. J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2 (2000), 385-404.
doi: 10.1142/S0219199700000190. |
[10] |
M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902.
doi: 10.1016/0362-546X(89)90020-5. |
[11] |
S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J., 62 (2010), 137-162.
doi: 10.2748/tmj/1270041030. |
[12] |
An Lê, Eigenvalue problems for the $p$-Laplacian, Nonlinear Anal., 64 (2006), 1057-1099.
doi: 10.1016/j.na.2005.05.056. |
[13] |
S. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities, J. Differential Equations, 185 (2002), 200-224.
doi: 10.1006/jdeq.2001.4167. |
[14] |
G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037. |
[15] |
P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) +\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.
doi: 10.1090/S0002-9939-1990-1007505-7. |
[16] |
O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz condition, J. Differential Equations, 245 (2008), 3628-3638.
doi: 10.1016/j.jde.2008.02.035. |
[17] |
I. Peral, Some results on quasilinear elliptic equations: growth versus shape, in "Nonlinear Functional Analysis and Applications to Differential Equations (Trieste 1997)" (A. Ambrosetti, K.-C. Chang and I. Ekeland eds.), World Sci. Publ., River Edge, NJ, (1998), 153-202. |
[18] |
J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.
doi: 10.1007/BF01449041. |
[1] |
Jia-Feng Liao, Yang Pu, Xiao-Feng Ke, Chun-Lei Tang. Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2157-2175. doi: 10.3934/cpaa.2017107 |
[2] |
Jinguo Zhang, Dengyun Yang. Fractional $ p $-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, 2021, 29 (5) : 3243-3260. doi: 10.3934/era.2021036 |
[3] |
Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076 |
[4] |
M. L. M. Carvalho, Edcarlos D. Silva, C. Goulart. Choquard equations via nonlinear rayleigh quotient for concave-convex nonlinearities. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3445-3479. doi: 10.3934/cpaa.2021113 |
[5] |
Leszek Gasiński, Nikolaos S. Papageorgiou. Singular equations with variable exponents and concave-convex nonlinearities. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022135 |
[6] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922 |
[7] |
Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073 |
[8] |
Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559 |
[9] |
Qingfang Wang. Multiple positive solutions of fractional elliptic equations involving concave and convex nonlinearities in $R^N$. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1671-1688. doi: 10.3934/cpaa.2016008 |
[10] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Pairs of positive solutions for $p$--Laplacian equations with combined nonlinearities. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1031-1051. doi: 10.3934/cpaa.2009.8.1031 |
[11] |
Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715 |
[12] |
Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053 |
[13] |
Shouchuan Hu, Nikolas S. Papageorgiou. Positive solutions for resonant (p, q)-equations with concave terms. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2639-2656. doi: 10.3934/cpaa.2018125 |
[14] |
Nikolaos S. Papageorgiou, George Smyrlis. Positive solutions for parametric $p$-Laplacian equations. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1545-1570. doi: 10.3934/cpaa.2016002 |
[15] |
Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure and Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941 |
[16] |
Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427 |
[17] |
Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166 |
[18] |
Leszek Gasiński, Nikolaos S. Papageorgiou. A pair of positive solutions for $(p,q)$-equations with combined nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 203-215. doi: 10.3934/cpaa.2014.13.203 |
[19] |
João Marcos do Ó, Uberlandio Severo. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Communications on Pure and Applied Analysis, 2009, 8 (2) : 621-644. doi: 10.3934/cpaa.2009.8.621 |
[20] |
Anna Maria Candela, Addolorata Salvatore. Positive solutions for some generalized $ p $–Laplacian type problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1935-1945. doi: 10.3934/dcdss.2020151 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]