• Previous Article
    Local existence of strong solutions to the three dimensional compressible MHD equations with partial viscosity
  • CPAA Home
  • This Issue
  • Next Article
    Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter
March  2013, 12(2): 831-850. doi: 10.3934/cpaa.2013.12.831

Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity

1. 

Faculty of Liberal Arts and Sciences, Hanbat National University, Daejeon, 305-719

2. 

Department of Mathematics, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784

Received  September 2011 Revised  January 2012 Published  September 2012

We consider the singularly perturbed nonlinear elliptic problem \begin{eqnarray*} \varepsilon^2 \Delta v - V(x)v + f(v) =0, v > 0, \lim_{|x|\to \infty} v(x) = 0. \end{eqnarray*} Under almost optimal conditions for the potential $V$ and the nonlinearity $f$, we establish the existence of single-peak solutions whose peak points converge to local minimum points of $V$ as $\varepsilon \to 0$. Moreover, we exhibit a threshold on the condition of $V$ at infinity between existence and nonexistence of solutions.
Citation: Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831
References:
[1]

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300. doi: 10.1007/s002050050067.  Google Scholar

[2]

A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159 (2001), 253-271. doi: 10.1007/s002050100152.  Google Scholar

[3]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144. doi: 10.4171/JEMS/24.  Google Scholar

[4]

A. Ambrosetti and A. Malchiodi, "Perturbation Methods and Semilinear Elliptic Problems on $R^N$," Progress in Mathematics 240, Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7396-2.  Google Scholar

[5]

A. Ambrosetti, A. Malchiodi and D. Ruiz, Bound states of Nonlinear Schrödinger equations with potentials vanishing at infinity, J. d'Analyse Math., 98 (2006), 317-348. doi: 10.1007/BF02790279.  Google Scholar

[6]

A. Ambrosetti and D. Ruiz, Radial solutions concentrating on spheres of NLS with vanishing potentials, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 889-907. doi: 10.1017/S0308210500004789.  Google Scholar

[7]

H. Berestycki and P.L. Lions, Nonlinear scalar field equations I existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-346. doi: 10.1007/BF00250555.  Google Scholar

[8]

M. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Rational Mech. Anal., 107 (1989), 293-324. doi: 10.1007/BF00251552.  Google Scholar

[9]

J. Byeon, and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200. doi: 10.1007/s00205-006-0019-3.  Google Scholar

[10]

J. Byeon, L. Jeanjean and K. Tanaka, Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases, Comm. Partial Differential Equations, 33 (2008), 1113-1136. doi: 10.1080/03605300701518174.  Google Scholar

[11]

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316. doi: 10.1007/s00205-002-0225-6.  Google Scholar

[12]

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calculus of Variations and PDE, 18 (2003), 207-219. doi: 10.1007/s00526-002-0191-8.  Google Scholar

[13]

E. N. Dancer, K. Y. Lam and S. Yan, The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations, Abstr. Appl. Anal., 3 (1998), 293-318. doi: 10.1155/S1085337501000276.  Google Scholar

[14]

E. N. Dancer and S. Yan, On the existence of multipeak solutions for nonlinear field equations on $R^N$, Discrete Contin. Dynam. Systems, 6 (2000), 39-50. doi: 10.3934/dcds.2000.6.39.  Google Scholar

[15]

M. Del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calculus of Variations and PDE, 4 (1996), 121-137. doi: 10.1007/BF01189950.  Google Scholar

[16]

M. Del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Functional Analysis, 149 (1997), 245-265. doi: 10.1006/jfan.1996.3085.  Google Scholar

[17]

M. Del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7.  Google Scholar

[18]

M. Del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32. doi: 10.1007/s002080200327.  Google Scholar

[19]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential, J. Functional Analysis, 69 (1986), 397-408. doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd edition, Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo, 1983.  Google Scholar

[21]

M. Guedda and L. Veron, Local and global properties of solutions of quasilinear elliptic equations, J. Differential Equations, 76 (1988), 159-189. doi: 10.1016/0022-0396(88)90068-X.  Google Scholar

[22]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations, 21 (1996), 787-820. doi: 10.1080/03605309608821208.  Google Scholar

[23]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408. doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[24]

L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calculus of Variations and PDE, 21 (2004), 287-318. doi: 10.1007/s00526-003-0261-6.  Google Scholar

[25]

O. Kwon, Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödingerinfinity, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 833-852. doi: 10.1017/S0308210508000309.  Google Scholar

[26]

V. Kondratiev, V. Liskevich and Z. Sobol, Second-order semilinear elliptic inequalities in exterior domains, J. Differential Equations, 187 (2003), 429-455 doi: 10.1016/S0022-0396(02)00036-0.  Google Scholar

[27]

X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5 (2000), 899-928.  Google Scholar

[28]

Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations, 2 (1997), 955-980.  Google Scholar

[29]

P. L. Lions, The concentration -compactness principle in the calculus of variations. The locally compact case, part II , Ann. Inst. Henri Poincaré, 1 (1984), 223-283.  Google Scholar

[30]

V. Liskevich, S. Lyakhova and V. Moroz, Positive solutions to singular semilinear elliptic equations with critical potential on cone-like domains, Adv. Differential Equations, 4 (2006), 361-398.  Google Scholar

[31]

V. Moroz and J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrodinger equations with fast decaying potentials, Calculus of Variations and PDE, 37 (2010), 1-27. doi: 10.1007/s00526-009-0249-y.  Google Scholar

[32]

W. M. Ni and J. Serrin, Nonexistence theorems for quasilinear partial differential equations, Proceedings of the Conference Commemorating the 1st Centennial of the Circolo Matematico di Palermo(Palermo, 1984), Rend. Circ. Mat. Palermo (2) Suppl. (1985), 171-185.  Google Scholar

[33]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$, Comm. Partial Differential Equations, 13 (1988), 1499-1519. doi: 10.1080/03605308808820585.  Google Scholar

[34]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631.  Google Scholar

[35]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. doi: 10.1007/BF02096642.  Google Scholar

[36]

H. Yin and P. Zhang, Bound states of nonlinear Schrodinger equations with potentials tending to zero at infinity, J. of Differential Equations, 247 (2009), 618-647. doi: 10.1016/j.jde.2009.03.002.  Google Scholar

show all references

References:
[1]

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300. doi: 10.1007/s002050050067.  Google Scholar

[2]

A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159 (2001), 253-271. doi: 10.1007/s002050100152.  Google Scholar

[3]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144. doi: 10.4171/JEMS/24.  Google Scholar

[4]

A. Ambrosetti and A. Malchiodi, "Perturbation Methods and Semilinear Elliptic Problems on $R^N$," Progress in Mathematics 240, Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7396-2.  Google Scholar

[5]

A. Ambrosetti, A. Malchiodi and D. Ruiz, Bound states of Nonlinear Schrödinger equations with potentials vanishing at infinity, J. d'Analyse Math., 98 (2006), 317-348. doi: 10.1007/BF02790279.  Google Scholar

[6]

A. Ambrosetti and D. Ruiz, Radial solutions concentrating on spheres of NLS with vanishing potentials, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 889-907. doi: 10.1017/S0308210500004789.  Google Scholar

[7]

H. Berestycki and P.L. Lions, Nonlinear scalar field equations I existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-346. doi: 10.1007/BF00250555.  Google Scholar

[8]

M. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Rational Mech. Anal., 107 (1989), 293-324. doi: 10.1007/BF00251552.  Google Scholar

[9]

J. Byeon, and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200. doi: 10.1007/s00205-006-0019-3.  Google Scholar

[10]

J. Byeon, L. Jeanjean and K. Tanaka, Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases, Comm. Partial Differential Equations, 33 (2008), 1113-1136. doi: 10.1080/03605300701518174.  Google Scholar

[11]

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316. doi: 10.1007/s00205-002-0225-6.  Google Scholar

[12]

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calculus of Variations and PDE, 18 (2003), 207-219. doi: 10.1007/s00526-002-0191-8.  Google Scholar

[13]

E. N. Dancer, K. Y. Lam and S. Yan, The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations, Abstr. Appl. Anal., 3 (1998), 293-318. doi: 10.1155/S1085337501000276.  Google Scholar

[14]

E. N. Dancer and S. Yan, On the existence of multipeak solutions for nonlinear field equations on $R^N$, Discrete Contin. Dynam. Systems, 6 (2000), 39-50. doi: 10.3934/dcds.2000.6.39.  Google Scholar

[15]

M. Del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calculus of Variations and PDE, 4 (1996), 121-137. doi: 10.1007/BF01189950.  Google Scholar

[16]

M. Del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Functional Analysis, 149 (1997), 245-265. doi: 10.1006/jfan.1996.3085.  Google Scholar

[17]

M. Del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7.  Google Scholar

[18]

M. Del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32. doi: 10.1007/s002080200327.  Google Scholar

[19]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential, J. Functional Analysis, 69 (1986), 397-408. doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd edition, Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo, 1983.  Google Scholar

[21]

M. Guedda and L. Veron, Local and global properties of solutions of quasilinear elliptic equations, J. Differential Equations, 76 (1988), 159-189. doi: 10.1016/0022-0396(88)90068-X.  Google Scholar

[22]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations, 21 (1996), 787-820. doi: 10.1080/03605309608821208.  Google Scholar

[23]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408. doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[24]

L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calculus of Variations and PDE, 21 (2004), 287-318. doi: 10.1007/s00526-003-0261-6.  Google Scholar

[25]

O. Kwon, Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödingerinfinity, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 833-852. doi: 10.1017/S0308210508000309.  Google Scholar

[26]

V. Kondratiev, V. Liskevich and Z. Sobol, Second-order semilinear elliptic inequalities in exterior domains, J. Differential Equations, 187 (2003), 429-455 doi: 10.1016/S0022-0396(02)00036-0.  Google Scholar

[27]

X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5 (2000), 899-928.  Google Scholar

[28]

Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations, 2 (1997), 955-980.  Google Scholar

[29]

P. L. Lions, The concentration -compactness principle in the calculus of variations. The locally compact case, part II , Ann. Inst. Henri Poincaré, 1 (1984), 223-283.  Google Scholar

[30]

V. Liskevich, S. Lyakhova and V. Moroz, Positive solutions to singular semilinear elliptic equations with critical potential on cone-like domains, Adv. Differential Equations, 4 (2006), 361-398.  Google Scholar

[31]

V. Moroz and J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrodinger equations with fast decaying potentials, Calculus of Variations and PDE, 37 (2010), 1-27. doi: 10.1007/s00526-009-0249-y.  Google Scholar

[32]

W. M. Ni and J. Serrin, Nonexistence theorems for quasilinear partial differential equations, Proceedings of the Conference Commemorating the 1st Centennial of the Circolo Matematico di Palermo(Palermo, 1984), Rend. Circ. Mat. Palermo (2) Suppl. (1985), 171-185.  Google Scholar

[33]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$, Comm. Partial Differential Equations, 13 (1988), 1499-1519. doi: 10.1080/03605308808820585.  Google Scholar

[34]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631.  Google Scholar

[35]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. doi: 10.1007/BF02096642.  Google Scholar

[36]

H. Yin and P. Zhang, Bound states of nonlinear Schrodinger equations with potentials tending to zero at infinity, J. of Differential Equations, 247 (2009), 618-647. doi: 10.1016/j.jde.2009.03.002.  Google Scholar

[1]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[2]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[3]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[4]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[5]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[6]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[7]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[8]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[9]

Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148

[10]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[11]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[12]

Jaeyoung Byeon, Ohsang Kwon, Yoshihito Oshita. Standing wave concentrating on compact manifolds for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 825-842. doi: 10.3934/cpaa.2015.14.825

[13]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[14]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[15]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[16]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

[17]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[18]

Guanghua Shi, Dongfeng Yan. KAM tori for quintic nonlinear schrödinger equations with given potential. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2421-2439. doi: 10.3934/dcds.2020120

[19]

Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure & Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341

[20]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]