\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generalized Schrödinger-Poisson type systems

Abstract Related Papers Cited by
  • In this paper we study the boundary value problem \begin{eqnarray*} -\Delta u+ \varepsilon q\Phi f(u)=\eta|u|^{p-1}u \quad in \quad \Omega, \\ - \Delta \Phi=2 qF(u) \quad in \quad \Omega, \\ u=\Phi=0 \quad on \quad \partial \Omega, \end{eqnarray*} where $\Omega \subset R^3$ is a smooth bounded domain, $1 < p < 5$, $\varepsilon,\eta= \pm 1$, $q>0$, $f: R\to R$ is a continuous function and $F$ is the primitive of $f$ such that $F(0)=0.$ We provide existence and multiplicity results assuming on $f$ a subcritical growth condition. The critical case is also considered and existence and nonexistence results are proved.
    Mathematics Subject Classification: Primary: 35J55, 35J60; Secondary: 35J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274.doi: 10.1007/s00032-008-0094-z.

    [2]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7.

    [3]

    A. Azzollini and P. d'Avenia, On a system involving a critically growing nonlinearity, J. Math. Anal. Appl., 387 (2012), 433-438.doi: 10.1016/j.jmaa.2011.09.012.

    [4]

    A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791.doi: 10.1016/j.anihpc.2009.11.012.

    [5]

    V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.

    [6]

    M. Berti and P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys., 243 (2003), 315-328.doi: 10.1007/s00220-003-0972-8.

    [7]

    T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.

    [8]

    P. d'Avenia, L. Pisani and G. Siciliano, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems, Nonlinear Anal., 71 (2009), e1985-e1995.doi: 10.1016/j.na.2009.02.111.

    [9]

    P. d'Avenia, L. Pisani and G. Siciliano, Klein-Gordon-Maxwell systems in a bounded domain, Discrete Contin. Dyn. Syst., 26 (2010), 135-149.doi: 10.3934/dcds.2010.26.135.

    [10]

    L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840.

    [11]

    H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 403-437.

    [12]

    E. H. LiebExistence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/1977), 93-105.

    [13]

    P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.doi: 10.1016/0362-546X(80)90016-4.

    [14]

    D. Mugnai, The Schrödinger-Poisson system with positive potential, Comm. Partial Differential Equations, 36 (2011), 1099-1117.doi: 10.1080/03605302.2011.558551.

    [15]

    L. Pisani and G. Siciliano, Neumann condition in the Schrödinger-Maxwell system, Topol. Methods Nonlinear Anal., 29 (2007), 251-264.

    [16]

    L. Pisani and G. Siciliano, Note on a Schrödinger-Poisson system in a bounded domain, Appl. Math. Lett., 21 (2008), 521-528.doi: 10.1016/j.aml.2007.06.005.

    [17]

    S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\l f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.

    [18]

    D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.doi: 10.1016/j.jfa.2006.04.005.

    [19]

    D. Ruiz and G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud., 8 (2008), 179-190.

    [20]

    G. Siciliano, Multiple positive solutions for a Schrödinger-Poisson-Slater system, J. Math. Anal. Appl., 365 (2010), 288-299.doi: 10.1016/j.jmaa.2009.10.061.

    [21]

    M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,'' 4th edition, Springer-Verlag, Berlin, 2008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return