Citation: |
[1] |
M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables,'' tenth edition, Dover, New York, 1972. |
[2] |
R. A. Adams and J. J. F Fournier, "Sobolev Spaces,'' second edition, Elsevier, Oxford, 2003. |
[3] |
C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. and Appl., 40 (1972), 769-790. |
[4] |
Y.-Z. Chen and L.-C. Wu, "Second Order Elliptic Equations and Elliptic Systems,'' AMS, Providence, RI, 1998. |
[5] |
M. Çalık, M. Oliver and S. Vasylkevych, Global well-posedness for the generalized large-scale semigeostrophic equations, Arch. Ration. Mech. An., accepted for publication, 2012. |
[6] |
C. R. Doering, J. D. Gibbon and C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Phys. D, 71 (1994), 285-318.doi: 10.1016/0167-2789(94)90150-3. |
[7] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. |
[8] |
D. D. Holm, Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion, Phys. D, 133 (1999), 215-269.doi: 10.1016/S0167-2789(99)00093-7. |
[9] |
D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.doi: 10.1006/aima.1998.1721. |
[10] |
E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitzungsber. d. Preuss. Acad. Wiss., 19 (1927), 147-152. |
[11] |
C. D. Levermore, M. Oliver and E. S. Titi, Global well-posedness for models of shallow water in a basin of varying bottom, Indiana Univ. Math. J., 45 (1996), 479-510. |
[12] |
J. Marsden and S. Shkoller, Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations on bounded domains, Phil. Trans R. Soc Lond. A, 359 (2001), 1449-1468.doi: 10.1098/rsta.2001.0852. |
[13] |
M. Oliver, Variational asymptotics for rotating shallow water near geostrophy: A transformational approach, J. Fluid Mech., 551 (2006), 197-234.doi: 10.1017/S0022112005008256. |
[14] |
M. Oliver and S. Shkoller, The vortex blob method as a second-grade non-Newtonian fluid, Comm. in Part. Diff. Eq., 26 (2001), 295-314. |
[15] |
M. Oliver and S. Vasylkevych, Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling, Discr. Cont. Dyn. Sys., 31 (2011), 827-846.doi: 10.3934/dcds.2011.31.827. |
[16] |
M. Oliver and S. Vasylkevych, Generalized LSG models with varying Coriolis parameter, Geophys. Astrophys. Fluid Dyn., in press. |
[17] |
R. Salmon, New equations for nearly geostrophic flow, J. Fluid Mech., 153 (1985), 461-477.doi: 10.1017/S0022112085001343. |
[18] |
V. I. Yudovich, Some bounds for solutions of elliptic equations, Amer. Math. Soc. Transl. Ser. 2, Vol. 56 (1966); previously in Mat. Sb. (N.S.), 59 (1962), suppl. 229-244 (in Russian). |
[19] |
V. I. Yudovich, Non-stationary flow of an ideal incompressible liquid, Zh. Vychisl. Mat. i Mat. Fiz., 6 (1963), 1032-1066. |