March  2013, 12(2): 957-972. doi: 10.3934/cpaa.2013.12.957

A general stability result in a memory-type Timoshenko system

1. 

King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran 31261, Saudi Arabia, Saudi Arabia

Received  March 2012 Revised  March 2012 Published  September 2012

In this paper we consider the following Timoshenko system \begin{eqnarray*} \varphi _{t t}-(\varphi _{x}+\psi )_{x}=0,\quad (0,1)\times R^+\\ \psi _{t t}-\psi _{x x}+\varphi _{x}+\psi +\int_0^t g(t-\tau )\psi_{x x}(\tau )d\tau =0,\quad (0,1)\times R^{+} \end{eqnarray*} with Dirichlet boundary conditions where $g$ is a positive nonincreasing function satisfying \begin{eqnarray*} g'(t)\leq -H(g(t)) \end{eqnarray*} and $H$ is a function satisfying some regularity and convexity conditions. We establish a general stability result for this system.
Citation: Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure and Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957
References:
[1]

F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Acad. Sci. Paris, Ser. I, 347 (2009), 867-872.

[2]

F. Alabau-Bousosuira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, Nonl. Differ. Eqns. Appl., 14 (2007), 643-669. doi: 10.1007/s00030-007-5033-0.

[3]

F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differ. Eqns, 194 (2003), 82-115. doi: 10.1016/S0022-0396(03)00185-2.

[4]

V. I. Arnold, "Mathematical Methods of Classical Mechanics," Springer-Verlag, New York, 1989.

[5]

H. D. Fernández Sare and J. E. Muñoz Rivera, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482-502. doi: 10.1016/j.jmaa.2007.07.012.

[6]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier's law, Arch. Rational Mech. Anal., 194 (2009), 221-251.

[7]

A. Guesmia and S. A. Messaoudi, On the control of solutions of a viscoelastic equation, Appl. Math. Comput., 206 (2008), 589-597. doi: 10.1016/j.amc.2008.05.122.

[8]

A. Guesmia and S. A. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Sci., 32 (2009), 2102-2122. doi: 10.1002/mma.1125.

[9]

K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system, Math. models Meth. Appl. Sci., 18 (2008), 647-667. doi: 10.1142/S0218202508002930.

[10]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429. doi: 10.1137/0325078.

[11]

Y. Liu and S. Kawashima, Decay property for the Timoshenko system with memory-type dissipation, to be published in Math. models and Meth. Appl. Sci., 22 (2012), DOI No: 10.1142/S0218202511500126. doi: 10.1142/S0218202511500126.

[12]

S. A. Messaoudi and M. I. Mustafa, On the internal and boundary stabilization of Timoshenko beams, Nonlinear Differential Eqns. Appl., 15 (2008), 655-671. doi: 10.1007/s00030-008-7075-3.

[13]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III, J. Math. Anal. Appl., 348 (2008), 298-307 doi: 10.1016/j.jmaa.2008.07.036.

[14]

S. A. Messaoudi and B. Said -Houari, Energy decay in a Timoshenko-type system with history in thermoelasticity of type III, Adv. Differ. Eqns, 14 (2009), 375-400.

[15]

S. A. Messaoudi and M. I. Mustafa, On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469. doi: 10.1002/mma.1047.

[16]

S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear Damped Timoshenko systems with second sound: Global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534. doi: 10.1002/mma.1049.

[17]

S. A. Messaoudi and B. Said -Houari, Uniform decay in a Timoshenko -type system with past history, J. Math. Anal. Appl., 360 (2009), 459-475. doi: 10.1016/j.jmaa.2009.06.064.

[18]

S. A. Messaoudi and M. I. Mustafa, A stability result in a memory-type Timoshenko system, Dyn. Syst. Appl., 18 (2009), 457-468.

[19]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-276. doi: 10.1016/S0022-247X(02)00436-5.

[20]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. syst., 9 (2003), 1625-1639.

[21]

J. E. Muñoz Rivera and R. Racke, Timoshenko systems with indefinite damping, J. Math. Anal. Appl., 341 (2008), 1068-1083. doi: 10.1016/j.jmaa.2007.11.012.

[22]

M. I. Mustafa and S. A. Messaoudi, General energy decay rates for a weakly damped Timoshenko system, J. Dyn. Control Syst., 16 (2010), 211-226 doi: 10.1007/s10883-010-9090-z.

[23]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 18 (2005), 535-542. doi: 10.1016/j.aml.2004.03.017.

[24]

A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differ. Eqns, 29 (2003), 1-14.

[25]

S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 41 (1921), 744-746. doi: 10.1080/14786442108636264.

show all references

References:
[1]

F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Acad. Sci. Paris, Ser. I, 347 (2009), 867-872.

[2]

F. Alabau-Bousosuira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, Nonl. Differ. Eqns. Appl., 14 (2007), 643-669. doi: 10.1007/s00030-007-5033-0.

[3]

F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differ. Eqns, 194 (2003), 82-115. doi: 10.1016/S0022-0396(03)00185-2.

[4]

V. I. Arnold, "Mathematical Methods of Classical Mechanics," Springer-Verlag, New York, 1989.

[5]

H. D. Fernández Sare and J. E. Muñoz Rivera, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482-502. doi: 10.1016/j.jmaa.2007.07.012.

[6]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier's law, Arch. Rational Mech. Anal., 194 (2009), 221-251.

[7]

A. Guesmia and S. A. Messaoudi, On the control of solutions of a viscoelastic equation, Appl. Math. Comput., 206 (2008), 589-597. doi: 10.1016/j.amc.2008.05.122.

[8]

A. Guesmia and S. A. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Sci., 32 (2009), 2102-2122. doi: 10.1002/mma.1125.

[9]

K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system, Math. models Meth. Appl. Sci., 18 (2008), 647-667. doi: 10.1142/S0218202508002930.

[10]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429. doi: 10.1137/0325078.

[11]

Y. Liu and S. Kawashima, Decay property for the Timoshenko system with memory-type dissipation, to be published in Math. models and Meth. Appl. Sci., 22 (2012), DOI No: 10.1142/S0218202511500126. doi: 10.1142/S0218202511500126.

[12]

S. A. Messaoudi and M. I. Mustafa, On the internal and boundary stabilization of Timoshenko beams, Nonlinear Differential Eqns. Appl., 15 (2008), 655-671. doi: 10.1007/s00030-008-7075-3.

[13]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III, J. Math. Anal. Appl., 348 (2008), 298-307 doi: 10.1016/j.jmaa.2008.07.036.

[14]

S. A. Messaoudi and B. Said -Houari, Energy decay in a Timoshenko-type system with history in thermoelasticity of type III, Adv. Differ. Eqns, 14 (2009), 375-400.

[15]

S. A. Messaoudi and M. I. Mustafa, On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469. doi: 10.1002/mma.1047.

[16]

S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear Damped Timoshenko systems with second sound: Global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534. doi: 10.1002/mma.1049.

[17]

S. A. Messaoudi and B. Said -Houari, Uniform decay in a Timoshenko -type system with past history, J. Math. Anal. Appl., 360 (2009), 459-475. doi: 10.1016/j.jmaa.2009.06.064.

[18]

S. A. Messaoudi and M. I. Mustafa, A stability result in a memory-type Timoshenko system, Dyn. Syst. Appl., 18 (2009), 457-468.

[19]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-276. doi: 10.1016/S0022-247X(02)00436-5.

[20]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. syst., 9 (2003), 1625-1639.

[21]

J. E. Muñoz Rivera and R. Racke, Timoshenko systems with indefinite damping, J. Math. Anal. Appl., 341 (2008), 1068-1083. doi: 10.1016/j.jmaa.2007.11.012.

[22]

M. I. Mustafa and S. A. Messaoudi, General energy decay rates for a weakly damped Timoshenko system, J. Dyn. Control Syst., 16 (2010), 211-226 doi: 10.1007/s10883-010-9090-z.

[23]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 18 (2005), 535-542. doi: 10.1016/j.aml.2004.03.017.

[24]

A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differ. Eqns, 29 (2003), 1-14.

[25]

S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 41 (1921), 744-746. doi: 10.1080/14786442108636264.

[1]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[2]

Jaime E. Muñoz Rivera, Maria Grazia Naso. About the stability to Timoshenko system with pointwise dissipation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2289-2303. doi: 10.3934/dcdss.2022078

[3]

Donatella Donatelli, Corrado Lattanzio. On the diffusive stress relaxation for multidimensional viscoelasticity. Communications on Pure and Applied Analysis, 2009, 8 (2) : 645-654. doi: 10.3934/cpaa.2009.8.645

[4]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[5]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[6]

Abderrahmane Youkana, Salim A. Messaoudi. General and optimal decay for a quasilinear parabolic viscoelastic system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1307-1316. doi: 10.3934/dcdss.2021129

[7]

Tamara Fastovska. Decay rates for Kirchhoff-Timoshenko transmission problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2645-2667. doi: 10.3934/cpaa.2013.12.2645

[8]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure and Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[9]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[10]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure and Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[12]

Salim A. Messaoudi, Jamilu Hashim Hassan. New general decay results in a finite-memory bresse system. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1637-1662. doi: 10.3934/cpaa.2019078

[13]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[14]

Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3725-3747. doi: 10.3934/dcdsb.2021204

[15]

Tongtong Liang. The stability with the general decay rate of the solution for stochastic functional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022127

[16]

Marta Lewicka, Piotr B. Mucha. A local existence result for a system of viscoelasticity with physical viscosity. Evolution Equations and Control Theory, 2013, 2 (2) : 337-353. doi: 10.3934/eect.2013.2.337

[17]

Hualin Zheng. Stability of a superposition of shock waves with contact discontinuities for the Jin-Xin relaxation system. Kinetic and Related Models, 2015, 8 (3) : 559-585. doi: 10.3934/krm.2015.8.559

[18]

Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control and Related Fields, 2021, 11 (2) : 353-371. doi: 10.3934/mcrf.2020040

[19]

Salah Drabla, Salim A. Messaoudi, Fairouz Boulanouar. A general decay result for a multi-dimensional weakly damped thermoelastic system with second sound. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1329-1339. doi: 10.3934/dcdsb.2017064

[20]

Ammar Khemmoudj, Yacine Mokhtari. General decay of the solution to a nonlinear viscoelastic modified von-Kármán system with delay. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3839-3866. doi: 10.3934/dcds.2019155

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]