\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On some elementary properties of vector minimizers of the Allen-Cahn energy

Abstract Related Papers Cited by
  • We derive a point-wise estimate for a map $u: \Omega \subset R^n \rightarrow R^m$ that minimizes $J_A(v): \int_A \frac{1}{2}|\nabla v|^2+U(v)$ subjected to the Dirichlet condition $v=u$ on $\partial\Omega$ for every open smooth and bounded set $A \subset \Omega$. We discuss some consequences of this basic estimate.
    Mathematics Subject Classification: Primary: 35J47, 35J50; Secondary: 35J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: simmetry in 3D for general non linearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.doi: 10.1023/A:1010602715526.

    [2]

    N. D. Alikakos, Some basic facts on the system $\Delta u-W_u(u)=0$, Proc. Amer. Math. Soc., 139 (2011), 153-162.doi: 10.1090/S0002-9939-2010-10453-7.

    [3]

    N. D. Alikakos and G. Fusco, Entire solutions to equivariant elliptic system with variational structure, Arch. Rational Mech. Anal., 202 (2011), 567-597.doi: 10.1007/s00205-011-0441-z.

    [4]

    N. D. Alikakos and G. Fusco, Asymptotic rigidity results for symmetric solutions of the elliptic system $\Delta u = Wu(u)$, work in progress.

    [5]

    N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves, preprint, (2012).

    [6]

    P. W. Bates, G. Fusco and P. Smyrnelis, Entire solutions with six-fold junctions to elliptic gradient systems with triangle symmetry, Advan. Nonlin. Stud., 13 (2013), 1-13.

    [7]

    P. W. Bates, G. Fusco and P. Smyrnelis, Multyphase solutions to the vector Allen-Cahn equations: Crystalline and other complex symmetric structures, work in progress.

    [8]

    A. Czarnecki, M. Kulczychi and W. Lubawski, On the connectedness of boundary and complement for domains, Ann. Polin. Math., 103 (2011), 189-191.doi: 10.4064/ap103-2-6.

    [9]

    G. Fusco, Equivariant entire solutions to the elliptic system $\Delta u=W_u(u)$ for general $G-$invariant potentials, Calc. Var. Part. Diff. Eqs., (2013), 1-23.

    [10]

    G. Fusco, F. Leonetti and C. Pignotti, A uniform estimate for positive solutions of semilinear elliptic equations, Trans. Amer. Math. Soc., 363 (2011), 4285-4307.doi: 10.1090/S0002-9947-2011-05356-0.

    [11]

    B. Gidas, W. M. Ni and L. Niremberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.doi: 10.1007/BF01221125.

    [12]

    J. Liouville, Lecons sur les fonctions doublement pèriodiques, J. Reine Angew. Math., 88 (1879), 277-310.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return