-
Previous Article
Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients
- CPAA Home
- This Issue
-
Next Article
A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian
Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions
1. | Department of Mathematics, Jilin University, Changchun 130012, China |
References:
[1] |
Y. Fu and B. Guo, Time periodic solution of the viscous Camassa-Holm equation, J. Math. Anal. Appl., 313 (2006), 311-321.
doi: 10.1016/j.jmaa.2005.08.073. |
[2] |
M. Giaquinta and M. Struwe, On the partial regularity of weak solutions of nonlinear parabolic systems, Math. Z., 179 (1982), 437-451.
doi: 10.1007/BF01215058. |
[3] |
G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335. |
[4] |
C. Liu, Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions, Annales Polonici Mathematici, 107 (2013), 271-291.
doi: 10.4064/ap107-3-4. |
[5] |
I. Pawłow and W. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847.
doi: 10.3934/cpaa.2011.10.1823. |
[6] |
G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63.
doi: 10.1137/110835608. |
[7] |
R. Wang, The Schauder theory of the boundary value problem for parabolic problem equations, Acta Sci. Nature Univ. Jilin., 2 (1964), 35-64. |
[8] |
Y. Wang and Y. Zhang, Time-periodic solutions to a nonlinear parabolic type equation of higher order, Acta Math. Appl. Sin., Engl. Ser., 24 (2008), 129-140.
doi: 10.1007/s10255-006-6174-3. |
[9] |
L. Yin, Y. Li, R. Huang and J. Yin, Time periodic solutions for a Cahn-Hilliard type equation, Mathematical and Computer Modelling, 48 (2008), 11-18.
doi: 10.1016/j.mcm.2007.09.001. |
[10] |
J. Yin, Y. Li and R. Huang, The Cahn-Hilliard type equations with periodic potentials and sources, Appl. Math. Comput., 211 (2009), 211-221.
doi: 10.1016/j.amc.2009.01.038. |
show all references
References:
[1] |
Y. Fu and B. Guo, Time periodic solution of the viscous Camassa-Holm equation, J. Math. Anal. Appl., 313 (2006), 311-321.
doi: 10.1016/j.jmaa.2005.08.073. |
[2] |
M. Giaquinta and M. Struwe, On the partial regularity of weak solutions of nonlinear parabolic systems, Math. Z., 179 (1982), 437-451.
doi: 10.1007/BF01215058. |
[3] |
G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335. |
[4] |
C. Liu, Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions, Annales Polonici Mathematici, 107 (2013), 271-291.
doi: 10.4064/ap107-3-4. |
[5] |
I. Pawłow and W. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847.
doi: 10.3934/cpaa.2011.10.1823. |
[6] |
G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63.
doi: 10.1137/110835608. |
[7] |
R. Wang, The Schauder theory of the boundary value problem for parabolic problem equations, Acta Sci. Nature Univ. Jilin., 2 (1964), 35-64. |
[8] |
Y. Wang and Y. Zhang, Time-periodic solutions to a nonlinear parabolic type equation of higher order, Acta Math. Appl. Sin., Engl. Ser., 24 (2008), 129-140.
doi: 10.1007/s10255-006-6174-3. |
[9] |
L. Yin, Y. Li, R. Huang and J. Yin, Time periodic solutions for a Cahn-Hilliard type equation, Mathematical and Computer Modelling, 48 (2008), 11-18.
doi: 10.1016/j.mcm.2007.09.001. |
[10] |
J. Yin, Y. Li and R. Huang, The Cahn-Hilliard type equations with periodic potentials and sources, Appl. Math. Comput., 211 (2009), 211-221.
doi: 10.1016/j.amc.2009.01.038. |
[1] |
Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136 |
[2] |
Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237 |
[3] |
Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579 |
[4] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[5] |
Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070 |
[6] |
Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1249-1274. doi: 10.3934/dcds.2009.25.1249 |
[7] |
Yi Wang, Dun Zhou. Transversality for time-periodic competitive-cooperative tridiagonal systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1821-1830. doi: 10.3934/dcdsb.2015.20.1821 |
[8] |
Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133 |
[9] |
Xiongxiong Bao, Wan-Tong Li, Zhi-Cheng Wang. Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system. Communications on Pure and Applied Analysis, 2020, 19 (1) : 253-277. doi: 10.3934/cpaa.2020014 |
[10] |
Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117 |
[11] |
Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115 |
[12] |
Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325 |
[13] |
Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation of a Cauchy problem. Conference Publications, 2009, 2009 (Special) : 259-268. doi: 10.3934/proc.2009.2009.259 |
[14] |
Ke Wang, Qi Wang, Feng Yu. Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 505-543. doi: 10.3934/dcds.2017021 |
[15] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[16] |
Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138 |
[17] |
Tung Nguyen, Nar Rawal. Coexistence and extinction in Time-Periodic Volterra-Lotka type systems with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3799-3816. doi: 10.3934/dcdsb.2018080 |
[18] |
Qiaoling Chen, Fengquan Li, Feng Wang. A diffusive logistic problem with a free boundary in time-periodic environment: Favorable habitat or unfavorable habitat. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 13-35. doi: 10.3934/dcdsb.2016.21.13 |
[19] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[20] |
Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]