• Previous Article
    Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications
  • CPAA Home
  • This Issue
  • Next Article
    Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients
May  2014, 13(3): 1119-1140. doi: 10.3934/cpaa.2014.13.1119

Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces

1. 

Department of Mathematics, Florida International University, DM413B, University Park, Miami, Florida 33199, United States

Received  April 2013 Revised  September 2013 Published  December 2013

In this article, we consider a non-autonomous multi-layer quasi-geostrophic equations of the ocean with a singularly oscillating external force $g^{\epsilon}= g_0(t) + \epsilon^{-\rho} g_1(t/\epsilon) $ depending on a small parameter $ \epsilon > 0 $ and $ \rho \in [0, 1) $ together with the averaged system with the external force $g_0(t),$ formally corresponding to the case $\epsilon = 0. $ Under suitable assumptions on the external force, we prove as in [10] the boundness of the uniform global attractor $\mathcal{A}^{\epsilon} $ as well as the upper semi-continuity of the attractors $\mathcal{A}^{\epsilon} $ of the singular systems to the attractor $\mathcal{A}^0 $ of the averaged system as $ \epsilon \rightarrow 0^+. $ When the external force is small enough and the viscosity is large enough, the convergence rate is controlled by $K \epsilon^{(1 -\rho)}. $ Let us mention that the non-homogenous boundary conditions (and the non-local constraint) present in the multi-layer quasi-geostrophic model makes the estimates more complicated, [3]. These difficulties are overcome using the new formulation presented in [25].
Citation: T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119
References:
[1]

V. I. Agoshkov and V. M. Ipatova, Solvability of the altimeter data assimilation problem in the quasi-geostrophic multi-layer model of ocean circulation , Comput. Math. Math. Phys., 37 (1997), 348-358.

[2]

A. V. Babin and M. I. Vishik, Attractors of evolution equations. Studies in Mathematics and its Applications, 25, North-Holland Publishing Co, Amsterdam, 1992.

[3]

C. Bernier, Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension , Adv. Math. Sci. Appl., 4 (1994), 465-489.

[4]

C. Bernier-Kazantsev and I. D. Chueshov, The finiteness of determining degrees of freedom for the quasi-geostrophic multi-layer ocean model , Nonlinear Anal., 42 (2000), 1499-1512. doi: 10.1016/S0362-546X(99)00188-1.

[5]

C. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model , Comm. Pure Appl. Math., 56 (2003), 198-233. doi: 10.1002/cpa.10056.

[6]

T. Caraballo and P. E. Kloeden, Non-autonomous attractor for integro-differential evolution equations , Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 17-36. doi: 10.3934/dcdss.2009.2.17.

[7]

T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays , R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194. doi: 10.1098/rspa.2003.1166.

[8]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays , J. Differential Equations, 205 (2004), 271-297. doi: 10.1016/j.jde.2004.04.012.

[9]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces , J. Math. Pures Appl., 90 (2008), 469-491. doi: 10.1016/j.matpur.2008.07.001.

[10]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces , Nonlinearity, 22 (2009), 351-370. doi: 10.1088/0951-7715/22/2/006.

[11]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms , Sb. Math, 192 (2001), 11-47. doi: 10.1070/SM2001v192n01ABEH000534.

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics. American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.

[13]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor , J. Dynam. Differential Equations, 19 (2007), 655-684. doi: 10.1007/s10884-007-9077-y.

[14]

A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness , Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55-66. doi: 10.3934/dcdss.2009.2.55.

[15]

T. Colin, The cauchy problem and the continuous limit for the multilayer model in geophysical fluid dynamics , SIAM J. Math. Anal., 28 (1997), 516-529. doi: 10.1137/S0036141095291269.

[16]

H. Crauel, A. Debussche and F. Flandoli, Random attractors , J. Dyn. Differential Equations, 2 (1995), 307-341. doi: 10.1007/BF02219225.

[17]

A. Haraux, Systèmes dynamiques dissipatifs et applications. Recherches en Mathématiques Appliquées,17, Mason, Paris, 1991.

[18]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations , Discrete Contin. Dyn. Syst., 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159.

[19]

P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization , Numer. Algorithms, 14 (1997), 141-152. doi: 10.1023/A:1019156812251.

[20]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations , Dyn. Continuous Impulsive Systems, 4 (1998), 211-226.

[21]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications , Nonlinearity, 5 (1992), 237-288.

[22]

J. L. Lions, R. Temam and S. Wang, On the equations of large-scale ocean , Nonlinearity, 5 (1992), 1007-1053.

[23]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces , J. Differential Equations, 230 (2006), 196-212. doi: 10.1016/j.jde.2006.07.009.

[24]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces , Discrete Contin. Dyn. Syst., 13 (2005), 701-719. doi: 10.3934/dcds.2005.13.701.

[25]

T. Tachim Medjo, On strong solutions of the multi-layer quasi-geostrophic equations of the ocean , Nonlinear Anal., 68 (2008), 3550-3564. doi: 10.1016/j.na.2007.03.046.

[26]

T. Tachim Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor , Discrete Contin. Dyn. Syst., 32 (2012), 265-291. doi: 10.3934/dcds.2012.32.265.

[27]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New-York, second edition, 1987.

[28]

P. Peixoto and A. H. Oort, Physics of Climate, American Institute of Physics, New-York, 1992.

[29]

R. Samelson, R. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation , Appl. Anal, 70 (1998), 147-173. doi: 10.1080/00036819808840682.

[30]

H. Song, S. Ma and C. Zhong, Attractors of non-autonomous reaction-diffusion equations , Nonlinearity, 22 (2009), 667-681. doi: 10.1088/0951-7715/22/3/008.

[31]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1988. doi: 10.1007/978-1-4684-0313-8.

[32]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, AMS-Chelsea Series, AMS, Providence, 2001.

[33]

Y. Wang and C. Zhong, On the existence of pullback attractors for non-autonomous reaction-diffusion equations , Dyn. Syst., 23 (2008), 1-16. doi: 10.1080/14689360701611821.

show all references

References:
[1]

V. I. Agoshkov and V. M. Ipatova, Solvability of the altimeter data assimilation problem in the quasi-geostrophic multi-layer model of ocean circulation , Comput. Math. Math. Phys., 37 (1997), 348-358.

[2]

A. V. Babin and M. I. Vishik, Attractors of evolution equations. Studies in Mathematics and its Applications, 25, North-Holland Publishing Co, Amsterdam, 1992.

[3]

C. Bernier, Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension , Adv. Math. Sci. Appl., 4 (1994), 465-489.

[4]

C. Bernier-Kazantsev and I. D. Chueshov, The finiteness of determining degrees of freedom for the quasi-geostrophic multi-layer ocean model , Nonlinear Anal., 42 (2000), 1499-1512. doi: 10.1016/S0362-546X(99)00188-1.

[5]

C. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model , Comm. Pure Appl. Math., 56 (2003), 198-233. doi: 10.1002/cpa.10056.

[6]

T. Caraballo and P. E. Kloeden, Non-autonomous attractor for integro-differential evolution equations , Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 17-36. doi: 10.3934/dcdss.2009.2.17.

[7]

T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays , R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194. doi: 10.1098/rspa.2003.1166.

[8]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays , J. Differential Equations, 205 (2004), 271-297. doi: 10.1016/j.jde.2004.04.012.

[9]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces , J. Math. Pures Appl., 90 (2008), 469-491. doi: 10.1016/j.matpur.2008.07.001.

[10]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces , Nonlinearity, 22 (2009), 351-370. doi: 10.1088/0951-7715/22/2/006.

[11]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms , Sb. Math, 192 (2001), 11-47. doi: 10.1070/SM2001v192n01ABEH000534.

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics. American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.

[13]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor , J. Dynam. Differential Equations, 19 (2007), 655-684. doi: 10.1007/s10884-007-9077-y.

[14]

A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness , Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55-66. doi: 10.3934/dcdss.2009.2.55.

[15]

T. Colin, The cauchy problem and the continuous limit for the multilayer model in geophysical fluid dynamics , SIAM J. Math. Anal., 28 (1997), 516-529. doi: 10.1137/S0036141095291269.

[16]

H. Crauel, A. Debussche and F. Flandoli, Random attractors , J. Dyn. Differential Equations, 2 (1995), 307-341. doi: 10.1007/BF02219225.

[17]

A. Haraux, Systèmes dynamiques dissipatifs et applications. Recherches en Mathématiques Appliquées,17, Mason, Paris, 1991.

[18]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations , Discrete Contin. Dyn. Syst., 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159.

[19]

P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization , Numer. Algorithms, 14 (1997), 141-152. doi: 10.1023/A:1019156812251.

[20]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations , Dyn. Continuous Impulsive Systems, 4 (1998), 211-226.

[21]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications , Nonlinearity, 5 (1992), 237-288.

[22]

J. L. Lions, R. Temam and S. Wang, On the equations of large-scale ocean , Nonlinearity, 5 (1992), 1007-1053.

[23]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces , J. Differential Equations, 230 (2006), 196-212. doi: 10.1016/j.jde.2006.07.009.

[24]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces , Discrete Contin. Dyn. Syst., 13 (2005), 701-719. doi: 10.3934/dcds.2005.13.701.

[25]

T. Tachim Medjo, On strong solutions of the multi-layer quasi-geostrophic equations of the ocean , Nonlinear Anal., 68 (2008), 3550-3564. doi: 10.1016/j.na.2007.03.046.

[26]

T. Tachim Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor , Discrete Contin. Dyn. Syst., 32 (2012), 265-291. doi: 10.3934/dcds.2012.32.265.

[27]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New-York, second edition, 1987.

[28]

P. Peixoto and A. H. Oort, Physics of Climate, American Institute of Physics, New-York, 1992.

[29]

R. Samelson, R. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation , Appl. Anal, 70 (1998), 147-173. doi: 10.1080/00036819808840682.

[30]

H. Song, S. Ma and C. Zhong, Attractors of non-autonomous reaction-diffusion equations , Nonlinearity, 22 (2009), 667-681. doi: 10.1088/0951-7715/22/3/008.

[31]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1988. doi: 10.1007/978-1-4684-0313-8.

[32]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, AMS-Chelsea Series, AMS, Providence, 2001.

[33]

Y. Wang and C. Zhong, On the existence of pullback attractors for non-autonomous reaction-diffusion equations , Dyn. Syst., 23 (2008), 1-16. doi: 10.1080/14689360701611821.

[1]

T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171

[2]

Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133

[3]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6377-6385. doi: 10.3934/dcdsb.2021023

[4]

May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179

[5]

Colin Cotter, Dan Crisan, Darryl Holm, Wei Pan, Igor Shevchenko. Modelling uncertainty using stochastic transport noise in a 2-layer quasi-geostrophic model. Foundations of Data Science, 2020, 2 (2) : 173-205. doi: 10.3934/fods.2020010

[6]

Ludovic Godard-Cadillac. Vortex collapses for the Euler and Quasi-Geostrophic models. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3143-3168. doi: 10.3934/dcds.2022012

[7]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[8]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[9]

T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265

[10]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093

[11]

Carina Geldhauser, Marco Romito. Point vortices for inviscid generalized surface quasi-geostrophic models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2583-2606. doi: 10.3934/dcdsb.2020023

[12]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1385-1412. doi: 10.3934/cpaa.2021025

[13]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5135-5148. doi: 10.3934/dcdsb.2020336

[14]

Tsukasa Iwabuchi. On analyticity up to the boundary for critical quasi-geostrophic equation in the half space. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1209-1224. doi: 10.3934/cpaa.2022016

[15]

Haigang Li, Jenn-Nan Wang, Ling Wang. Refined stability estimates in electrical impedance tomography with multi-layer structure. Inverse Problems and Imaging, 2022, 16 (1) : 229-249. doi: 10.3934/ipi.2021048

[16]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure and Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[17]

Yong Zhou. Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 525-532. doi: 10.3934/dcds.2006.14.525

[18]

Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152

[19]

Maria Schonbek, Tomas Schonbek. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1277-1304. doi: 10.3934/dcds.2005.13.1277

[20]

Eleftherios Gkioulekas, Ka Kit Tung. Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 293-314. doi: 10.3934/dcdsb.2007.7.293

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]