\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces

Abstract Related Papers Cited by
  • In this article, we consider a non-autonomous multi-layer quasi-geostrophic equations of the ocean with a singularly oscillating external force $g^{\epsilon}= g_0(t) + \epsilon^{-\rho} g_1(t/\epsilon) $ depending on a small parameter $ \epsilon > 0 $ and $ \rho \in [0, 1) $ together with the averaged system with the external force $g_0(t),$ formally corresponding to the case $\epsilon = 0. $ Under suitable assumptions on the external force, we prove as in [10] the boundness of the uniform global attractor $\mathcal{A}^{\epsilon} $ as well as the upper semi-continuity of the attractors $\mathcal{A}^{\epsilon} $ of the singular systems to the attractor $\mathcal{A}^0 $ of the averaged system as $ \epsilon \rightarrow 0^+. $ When the external force is small enough and the viscosity is large enough, the convergence rate is controlled by $K \epsilon^{(1 -\rho)}. $ Let us mention that the non-homogenous boundary conditions (and the non-local constraint) present in the multi-layer quasi-geostrophic model makes the estimates more complicated, [3]. These difficulties are overcome using the new formulation presented in [25].
    Mathematics Subject Classification: Primary: 35Q30,35Q35; Secondary: 35Q72.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Agoshkov and V. M. Ipatova, Solvability of the altimeter data assimilation problem in the quasi-geostrophic multi-layer model of ocean circulation , Comput. Math. Math. Phys., 37 (1997), 348-358.

    [2]

    A. V. Babin and M. I. Vishik, Attractors of evolution equations. Studies in Mathematics and its Applications, 25, North-Holland Publishing Co, Amsterdam, 1992.

    [3]

    C. Bernier, Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension , Adv. Math. Sci. Appl., 4 (1994), 465-489.

    [4]

    C. Bernier-Kazantsev and I. D. Chueshov, The finiteness of determining degrees of freedom for the quasi-geostrophic multi-layer ocean model , Nonlinear Anal., 42 (2000), 1499-1512.doi: 10.1016/S0362-546X(99)00188-1.

    [5]

    C. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model , Comm. Pure Appl. Math., 56 (2003), 198-233.doi: 10.1002/cpa.10056.

    [6]

    T. Caraballo and P. E. Kloeden, Non-autonomous attractor for integro-differential evolution equations , Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 17-36.doi: 10.3934/dcdss.2009.2.17.

    [7]

    T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays , R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.doi: 10.1098/rspa.2003.1166.

    [8]

    T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays , J. Differential Equations, 205 (2004), 271-297.doi: 10.1016/j.jde.2004.04.012.

    [9]

    V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces , J. Math. Pures Appl., 90 (2008), 469-491.doi: 10.1016/j.matpur.2008.07.001.

    [10]

    V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces , Nonlinearity, 22 (2009), 351-370.doi: 10.1088/0951-7715/22/2/006.

    [11]

    V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms , Sb. Math, 192 (2001), 11-47.doi: 10.1070/SM2001v192n01ABEH000534.

    [12]

    V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics. American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.

    [13]

    V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor , J. Dynam. Differential Equations, 19 (2007), 655-684.doi: 10.1007/s10884-007-9077-y.

    [14]

    A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness , Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55-66.doi: 10.3934/dcdss.2009.2.55.

    [15]

    T. Colin, The cauchy problem and the continuous limit for the multilayer model in geophysical fluid dynamics , SIAM J. Math. Anal., 28 (1997), 516-529.doi: 10.1137/S0036141095291269.

    [16]

    H. Crauel, A. Debussche and F. Flandoli, Random attractors , J. Dyn. Differential Equations, 2 (1995), 307-341.doi: 10.1007/BF02219225.

    [17]

    A. Haraux, Systèmes dynamiques dissipatifs et applications. Recherches en Mathématiques Appliquées,17, Mason, Paris, 1991.

    [18]

    N. Ju, The global attractor for the solutions to the 3D viscous primitive equations , Discrete Contin. Dyn. Syst., 17 (2007), 159-179.doi: 10.3934/dcds.2007.17.159.

    [19]

    P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization , Numer. Algorithms, 14 (1997), 141-152.doi: 10.1023/A:1019156812251.

    [20]

    P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations , Dyn. Continuous Impulsive Systems, 4 (1998), 211-226.

    [21]

    J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications , Nonlinearity, 5 (1992), 237-288.

    [22]

    J. L. Lions, R. Temam and S. Wang, On the equations of large-scale ocean , Nonlinearity, 5 (1992), 1007-1053.

    [23]

    S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces , J. Differential Equations, 230 (2006), 196-212.doi: 10.1016/j.jde.2006.07.009.

    [24]

    S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces , Discrete Contin. Dyn. Syst., 13 (2005), 701-719.doi: 10.3934/dcds.2005.13.701.

    [25]

    T. Tachim Medjo, On strong solutions of the multi-layer quasi-geostrophic equations of the ocean , Nonlinear Anal., 68 (2008), 3550-3564.doi: 10.1016/j.na.2007.03.046.

    [26]

    T. Tachim Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor , Discrete Contin. Dyn. Syst., 32 (2012), 265-291.doi: 10.3934/dcds.2012.32.265.

    [27]

    J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New-York, second edition, 1987.

    [28]

    P. Peixoto and A. H. Oort, Physics of Climate, American Institute of Physics, New-York, 1992.

    [29]

    R. Samelson, R. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation , Appl. Anal, 70 (1998), 147-173.doi: 10.1080/00036819808840682.

    [30]

    H. Song, S. Ma and C. Zhong, Attractors of non-autonomous reaction-diffusion equations , Nonlinearity, 22 (2009), 667-681.doi: 10.1088/0951-7715/22/3/008.

    [31]

    R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1988.doi: 10.1007/978-1-4684-0313-8.

    [32]

    R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, AMS-Chelsea Series, AMS, Providence, 2001.

    [33]

    Y. Wang and C. Zhong, On the existence of pullback attractors for non-autonomous reaction-diffusion equations , Dyn. Syst., 23 (2008), 1-16.doi: 10.1080/14689360701611821.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return