Citation: |
[1] |
M. Bardi and S. Bottacin, On the Dirichlet problem for nonlinear degenerate elliptic equations and applications to optimal control, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 13-39. |
[2] |
M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi Bellman Equations," Systems and Control: Foundations and Applications. Birkhauser, Boston, MA, 1997. |
[3] |
M. Bardi and P. Mannucci, On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations, Commun. Pure Appl. Anal., 5 (2006), 709-731. |
[4] |
M. Bardi and P. Mannucci, Comparison principles for subelliptic equations of Monge-Ampère type, Boll. Unione Mat. Ital., 9 (2008), 489-495. |
[5] |
M. Bardi and P. Mannucci, Comparison principles for equations of Monge-Ampère type in Carnot groups: a direct proof, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 41-51. |
[6] |
M. Bardi and P. Mannucci, Comparison principles and Dirichlet problem for fully nonlinear degenerate equations of Monge-Ampère type, to appear on Forum Math., published online May 2013, 2013-0067.doi: DOI: 10.1515/forum-2013-0067. |
[7] |
F. H. Beatrous, T. J. Bieske and J. J. Manfredi, The maximum principle for vector fields, in "The $p$-harmonic Equation and Recent Advances in Analysis," Contemp. Math., 370, |
[8] |
T. Bieske, On infinite harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 727-761. |
[9] |
T. Bieske, Viscosity solutions on Grushin-type planes, Illinois J. Math., 46 (2002), 893-911. |
[10] |
T. Bieske and L. Capogna, The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathodory metrics, Trans. Amer. Math. Soc., 357 (2005), 795-823. |
[11] |
I. Birindelli, I. Capuzzo Dolcetta and A. Cutrì, Indefinite semi-linear equations on the Heisenberg group: a priori bounds and existence, Comm. Partial Differential Equations, 23 (1998), 1123-1157. |
[12] |
I. Birindelli and B. Stroffolini, Existence theorems for fully nonlinear equations in the Heisenberg group, Subelliptic PDE's and applications to geometry and finance, Lect. Notes Semin. Interdiscip. Mat., Potenza, 6 (2007), 49-55. |
[13] |
A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory For Their Sub-Laplacians," Springer, Berlin, 2007. |
[14] |
M. G. Crandall, Viscosity solutions: a primer, In "Viscosity Solutions and Applications," Lecture Notes in Mathematics, 1660. Springer, Berlin; C.I.M.E., Florence, 1997. |
[15] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. |
[16] |
A. Cutrì and N. Tchou, Barrier functions for Pucci-Heisenberg operators and applications, Int. J. Dyn. Syst. Differ. Equ., 1, 2 (2007), 117-131. |
[17] |
G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups," Princeton University Press, Princeton, 1982. |
[18] |
C. E. Gutierrez and A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group, Comm. Partial Differential Equations, 29 (2004), 1305-1334. |
[19] |
L. Hörmander, Hypoelliptic Second Order Differential Equations, Acta Math. Uppsala, 119 (1967), 147-17 . |
[20] |
M. A. Katsoulakis, A representation formula and regularizing properties for viscosity solutions of second-order fully nonlinear degenerate parabolic equations, Nonlinear Analysis, Theory, Methods & Appl., 24 (1995), 147-158. |
[21] |
H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq., 83 (1990), 26-78. |
[22] |
R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech., 101 (1988), 1-27. |
[23] |
J. J. Manfredi, Nonlinear subelliptic equations on Carnot groups, Notes of a course given at the Third School on Analysis and Geometry in Metric Spaces, Trento, May 2003, available at http://www.pitt.edu/ manfredi/. |
[24] |
C. Y. Wang, The Aronsson equation for absolute minimizers of $L^\infty$-functionals associated with vector fields satisfying Hörmander's condition, Trans. Amer. Math. Soc. 359, 1 (2007), 91-113. |