May  2014, 13(3): 1267-1282. doi: 10.3934/cpaa.2014.13.1267

On the orbital stability of fractional Schrödinger equations

1. 

Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756

2. 

Department of Mathematics, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia

3. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea

4. 

Department of Applied Physics, Waseda University, Tokyo, 169-8555

Received  June 2013 Revised  November 2013 Published  December 2013

We show the existence of ground state and orbital stability of standing waves of fractional Schrödinger equations with power type nonlinearity. For this purpose we establish the uniqueness of weak solutions.
Citation: Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267
References:
[1]

J. P. Borgna and D. F. Rial, Existence of ground states for a one dimensional relativistic Schrodinger equations, J. Math. Phys., 53, 062301 (2012). doi: 10.1063/1.4726198.

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[3]

Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity, Funkcialaj Ekvacioj, 56 (2013), 193-224.

[4]

Y. Cho, G. Hwang and T. Ozawa, Global well-posedness of critical nonlinear Schrödinger equations below $L^2$, DCDS-A, 33 (2013), 1389-1405. doi: 10.3934/dcds.2013.33.1389.

[5]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, to appear in \emph{Indina Univ. Math. J.}, (). 

[6]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Contem. Math., 11 (2009), 355-365. doi: 10.1142/S0219199709003399.

[7]

Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128. doi: 10.3934/cpaa.2011.10.1121.

[8]

Daoyuan Fang and Chengbo Wang, Weighted strichartz estimates with angular regularity and their applications, Forum Mathematicum, 23 (2011), 181-205. doi: 10.1515/FORM.2011.009.

[9]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, P. Roy. Soc. Edinburgh A, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.

[10]

B. Guo and D. Huang, Existence and stability of standing waves for nonlinear fractional Schr\"odinger equations, J. Math. Phys., 53, 083702 (2012). doi: 10.1063/1.4746806.

[11]

H. Hajaiej, Existence of minimizers of functionals involving the fractional gradient in the absence of compactness, symmetry and monotonicity, J. Math. Anal. Appl., 399 (2013), 17-26. doi: 10.1016/j.jmaa.2012.09.023.

[12]

H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gargliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, RIMS Kokyuroku Bessatsu, B26 (2011), 159-199.

[13]

A. D. Ionescu and F. Pusateri, Nolinear fractional Schrödinger equations in one dimension,, \emph{To appear in J. Funct. Anal.}, ().  doi: 10.1016/j.jfa.2013.08.027.

[14]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, II, Ann. Inst. H. Poincare' Anal. Non Line'aire, 1 (1984), 109-145; 223-283.

[15]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Cal. Var. PDE., 25 (2006), 403-408. doi: 10.1007/s00526-005-0349-2.

show all references

References:
[1]

J. P. Borgna and D. F. Rial, Existence of ground states for a one dimensional relativistic Schrodinger equations, J. Math. Phys., 53, 062301 (2012). doi: 10.1063/1.4726198.

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[3]

Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity, Funkcialaj Ekvacioj, 56 (2013), 193-224.

[4]

Y. Cho, G. Hwang and T. Ozawa, Global well-posedness of critical nonlinear Schrödinger equations below $L^2$, DCDS-A, 33 (2013), 1389-1405. doi: 10.3934/dcds.2013.33.1389.

[5]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, to appear in \emph{Indina Univ. Math. J.}, (). 

[6]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Contem. Math., 11 (2009), 355-365. doi: 10.1142/S0219199709003399.

[7]

Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128. doi: 10.3934/cpaa.2011.10.1121.

[8]

Daoyuan Fang and Chengbo Wang, Weighted strichartz estimates with angular regularity and their applications, Forum Mathematicum, 23 (2011), 181-205. doi: 10.1515/FORM.2011.009.

[9]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, P. Roy. Soc. Edinburgh A, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.

[10]

B. Guo and D. Huang, Existence and stability of standing waves for nonlinear fractional Schr\"odinger equations, J. Math. Phys., 53, 083702 (2012). doi: 10.1063/1.4746806.

[11]

H. Hajaiej, Existence of minimizers of functionals involving the fractional gradient in the absence of compactness, symmetry and monotonicity, J. Math. Anal. Appl., 399 (2013), 17-26. doi: 10.1016/j.jmaa.2012.09.023.

[12]

H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gargliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, RIMS Kokyuroku Bessatsu, B26 (2011), 159-199.

[13]

A. D. Ionescu and F. Pusateri, Nolinear fractional Schrödinger equations in one dimension,, \emph{To appear in J. Funct. Anal.}, ().  doi: 10.1016/j.jfa.2013.08.027.

[14]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, II, Ann. Inst. H. Poincare' Anal. Non Line'aire, 1 (1984), 109-145; 223-283.

[15]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Cal. Var. PDE., 25 (2006), 403-408. doi: 10.1007/s00526-005-0349-2.

[1]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[2]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[3]

Yingying Xie, Jian Su, Liquan Mei. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5001-5017. doi: 10.3934/dcds.2020209

[4]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[5]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[6]

Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2721-2757. doi: 10.3934/dcdsb.2021156

[7]

Qihong Shi, Congming Peng, Qingxuan Wang. Blowup results for the fractional Schrödinger equation without gauge invariance. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021304

[8]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[9]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[10]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[11]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[12]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[13]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[14]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[15]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[16]

Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475

[17]

Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177

[18]

Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246

[19]

Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037

[20]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (111)
  • HTML views (0)
  • Cited by (21)

[Back to Top]