Advanced Search
Article Contents
Article Contents

Incompressible limit for the full magnetohydrodynamics flows under Strong Stratification on unbounded domains

Abstract Related Papers Cited by
  • In this paper we consider the magnetohydrodynamics flows giving rise to a variety of mathematical problems in many areas. We study the incompressible limit problems for magnetohydrodynamics flows under strong stratification on unbounded domains.
    Mathematics Subject Classification: 35B40, 35D05, 35B45.


    \begin{equation} \\ \end{equation}
  • [1]

    E. Becker, "Gasdynamik," Teubner-Verlag, Stuttgart, 1966.


    B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-625.doi: 10.1007/s00220-006-0052-y.


    S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications," Cambridge University Press, Cambridge, 1986.


    E. Feireisl, Incompressible limits and propagation of acoustic waves in large domains with boundaries, Comm. Math. Phys., 294 (2010), 73-95.doi: 10.1007/s00220-009-0954-6.


    E. Feireisl, Stability of flows of real monoatomic gases, Commun. Partial Differential Equations, 31 (2006), 325-348.doi: 10.1080/03605300500358186.


    E. Feireisl and A. Novotný, The low Mach number limit for the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Ana., 186 (2007), 77-107.doi: 10.1007/s00205-007-0066-4.


    E. Feireisl and A. Novotný, "Singular Limit in the Thermodynamics of Viscous Fluids," Advanceds in Mathematical Fluid Mechanics, 2009.doi: 10.1007/978-3-7643-8843-0.


    E. Feireisl, A. Novotný} and H. Petzeltová, Low Mach number limt for the Navier-Stokes system on unbounded domains under strong stratification, Comm. P.D.E., 35 (2010), 68-88.doi: 10.1080/03605300903279377.


    X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.doi: 10.1007/s00220-008-0497-2.


    S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524.doi: 10.1002/cpa.3160340405.


    Y.-S. Kwon and K. Trivisa, On the incompressible limits for the full magnetohydrodynamics flows, J. Differential Equations., 251 (2011), 1990-2023.doi: 10.1016/j.jde.2011.04.016.


    Peter Kukucka, Singular Limits of the Equations of Magnetohydrodynamics, J. Math. Fluid Mech., 13 (2011), 173-189.doi: 10.1007/s00021-009-0007-0.


    G. Lee, P. Kim and Y.-S. Kwon, Incompressible limit for the full magnetohydrodynamics flows under strong stratification, J. Math. Anal. Appl., 387 (2012), 221-240.doi: 10.1016/j.jmaa.2011.08.070.


    P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627.doi: 10.1016/S0021-7824(98)80139-6.


    A. Novotný, M. Ruzicka and G. Thater, Rigorous derivation of the anelastic approximation to the Oberbeck-Boussinesq equations, Asymptot. Anal., 75 (2011), 93-123.


    A. Novotný, M. Ruzicka and G. Thater, Singular limit of the equations of magnetohydrodynamics in the presence of strong stratification, Math. Models Methods Appl. Sci., 21 (2011), 115-147.doi: 10.1142/S0218202511005003.


    M. Reed and B. Simon, "Methods of Modern Mathematical Physics.IV. Analysis of Operator," New York: Academy Press [Harcourt Brace Jovanovich Publishers], 1978.

  • 加载中

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint