\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Infinite-energy solutions for the Navier-Stokes equations in a strip revisited

Abstract Related Papers Cited by
  • The paper deals with the Navier-Stokes equations in a strip in the class of spatially non-decaying (in nite-energy) solutions belonging to the properly chosen uniformly local Sobolev spaces. The global well-posedness and dissipativity of the Navier-Stokes equations in a strip in such spaces has been rst established in [22]. However, the proof given there contains a rather essential error and the aim of the present paper is to correct this error and to show that the main results of [22] remain true.
    Mathematics Subject Classification: 35B40, 35B45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Abergel, Attractor for a Navier-Stokes flow in an unbounded domain. Attractors, inertial manifolds and their approximation (Marseille-Luminy, 1987). RAIRO Model. Math. Anal. Numer., 23 (1989), 359-370.

    [2]

    F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differential Equations, 83 (1990), 85-108.doi: 10.1016/0022-0396(90)90070-6.

    [3]

    A. Afendikov and A. Mielke, Dynamical properties of spatially non-decaying 2D Navier-Stokes flows with Kolmogorov forcing in an infinite strip, J. Math. Fluid Mech., 7 (2005), 51-67.doi: 10.1007/s00021-004-0131-9.

    [4]

    H. Amann, On the strong solvability of the Navier-Stokes equations, Jour. Math.Fluid Mechanics, 2 (2000), 16-98.doi: 10.1007/s000210050018.

    [5]

    A. Babin, Asymptotic Expansions at infinity of a strongly perturbed Poiseuille flow, Advances in Soviet Math., 10 (1992), 1-83.

    [6]

    A. Babin, The attractor of a Navier-Stokes system in an unbounded channel-like domain, J. Dynam. Differential Equations, 4 (1992), 555-584.doi: 10.1007/BF01048260.

    [7]

    A. Babin and M.Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221-243.doi: 10.1017/S0308210500031498.

    [8]

    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow, 1989; North Holland, Amsterdam, 1992.

    [9]

    M. Efendiev and S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.doi: 10.1002/cpa.1011.

    [10]

    Y. Giga, S. Matsui and O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity, J. Math. Fluid Mech., 3 (2001), 302-315.doi: 10.1007/PL00000973.

    [11]

    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.

    [12]

    P. Lemarie-Rieusset, Recent developments in the Navier-Stokes problem, Chapman $&$ Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002.doi: 10.1201/9781420035674.

    [13]

    A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains - existence and comparison, Nonlinearity, 8 (1995), 743-768.

    [14]

    A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. IV, 103-200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008.doi: 10.1016/S1874-5717(08)00003-0.

    [15]

    J. Pennant and S. Zelik, Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\R^3$, Comm. Pure Appl. Anal., 12 (2013), 461-480.

    [16]

    S. Revina and V. Yudovich, $L^p$-estimates for the resolvent of the Stokes operator in an infinite cylinder, (Russian) Mat. Sb., 187 (1996), 97-118; translation in Sb. Math., 187 (1996), 881-902.doi: 10.1070/SM1996v187n06ABEH000139.

    [17]

    O. Sawada and Y. Taniuchi, A remark on $L^\infty$-solutions to the 2D Navier-Stokes equations, J. Math. Fluid Mech., 9 (2007), 533-542.doi: 10.1007/s00021-005-0212-4.

    [18]

    R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam New York-Oxford, 1977.

    [19]

    R. Temam, Infnite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematics Series, Springer, New York-Berlin, 1988; 2nd ed., New York, 1997.

    [20]

    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978.

    [21]

    S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip, Glasg. Math. J., 49 (2007), 525-588.doi: 10.1017/S0017089507003849.

    [22]

    S. Zelik, Weak spatially nondecaying solutions of 3D Navier-Stokes equations in cylindrical domains, Instability in models connected with fluid flows. II, 255-327, Int. Math. Ser. (N. Y.), 7, Springer, New York, 2008.doi: 10.1007/978-0-387-75219-8_6.

    [23]

    S. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math., 56 (2003), 584-637.doi: 10.1002/cpa.10068.

    [24]

    S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in $\R^2$, Jour. Math. Fluid Mech., 15 (2013), 717-745.doi: 10.1007/s00021-013-0144-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return