Citation: |
[1] |
P. Baras and R. Kersner, Local and global solvability of a class of semilinear parabolic equations, J. Differential Equations, 68 (1987), 238-252. |
[2] |
K. Deng and H.A. Levine, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl., 243 (2000), 85-126. |
[3] |
S. Eidelman, S. Kamin and F. Porper, Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity, Asympotic Analysis, 22 (2000), 349-358. |
[4] |
D. Eidus, The Cauchy problem for the non-linear filtration equation in an inhomogeneous medium, J. Differential Equations, 84 (1990), 309-318. |
[5] |
R. Ferreira, A. de Pablo, G. Reyes and A. Sánchez, The interfaces of an inhomogeneous porous medium equation with convection, Comm. Partial Differential Equations, 31 (2006) 497-514.doi: 10.1080/03605300500481343. |
[6] |
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. |
[7] |
S. Kamin, R. Kersner and A. Tessi, On the Cauchy problem for a class of parabolic equations with variable density, Atti Accad. Naz. Lincei Rend.Cl. Sci. Fis. Mat. Natur., 9 (1998), 279-298. |
[8] |
S. Kamin, A. Pozio and A. Tessi, Admissible conditions for parabolic equations degenerating at infinity, Algebra i Analiz, 19 (2007), 105-1221. (Russian) translation in St. Petersburg Math. J., 19 (2008), 239-251.doi: 10.1090/S1061-0022-08-00996-5. |
[9] |
S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., 16 (1963), 305-330. |
[10] |
H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev., 32 (1990), 262-288.doi: 10.1137/1032046. |
[11] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Singapore, 1996. |
[12] |
A. V. Martynenko, A. F. Tedeev and V. N. Shramenko, The Cauchy problem for a degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data, Izvestiya: Mathematics, 76 (2012), 563-580.doi: 10.1070/IM2012v076n03ABEH002595. |
[13] |
A. de Pablo, G. Reyes and A. Sánchez, The Cauchy problem for a nonhomogeneous heat equation with reaction, Discrete and Continuous Dynamical Systems, 33 (2013), 643-662. |
[14] |
R. G. Pinsky, Existence and nonexistence of global solutions for $u_t=\Delta u+a(x)u^p$ in $\mathbbR^d$}, J. Differential Equations, 133 (1997), 152-177.doi: 10.1006/jdeq.1996.3196. |
[15] |
M. A. Pozio, F. Punzo and A. Tesei, Uniqueness and nonuniqueness of solutions to parabolic problems with singular coeffcients, Discrete and Continuous Dynamical Systems, 30 (2011), 891-916.doi: 10.3934/dcds.2011.30.891. |
[16] |
Y. W. Qi, The critical exponents of parabolic equations and blow-up in $R^n$, Proc. Roy. Soc. Edinburgh Sect. A, 128(1998), 123-136.doi: 10.1017/S0308210500027190. |
[17] |
G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density, Comm. Pure Appl. Anal., 8 (2009), 493-508.doi: 10.3934/cpaa.2009.8.493. |
[18] |
Y. Wang and Z. Xiang, The interfaces of an inhomogeneous non-Newtonian polytropic filtration equation with convection, IMA J. Appl. Math., (2013).doi: 10.1093/imamat/hxt043. |
[19] |
C. Wang and S. Zheng, Critical Fujita exponents of degenerate and singular parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 415-430.doi: 10.1017/S0308210500004637. |
[20] |
Z. Xiang, C. Mu and X. Hu, Support properties of solutions to a degenerate equation with absorption and variable density, Nonlinear Anal., 68 (2008), 1940-1953.doi: 10.1016/j.na.2007.01.021. |