\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation

Abstract Related Papers Cited by
  • In this paper, we study the existence of local/global solutions to the Cauchy problem \begin{eqnarray} \rho(x)u_t=\Delta u+q(x)u^p, (x,t)\in R^N \times (0,T),\\ u(x,0)=u_{0}(x)\ge 0, x \in R^N \end{eqnarray} with $p > 0$ and $N\ge 3$. We describe the sharp decay conditions on $\rho, q$ and the data $u_0$ at infinity that guarantee the local/global existence of nonnegative solutions.
    Mathematics Subject Classification: Primary: 35K55, 35Q92, 35Q35; Secondary: 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Baras and R. Kersner, Local and global solvability of a class of semilinear parabolic equations, J. Differential Equations, 68 (1987), 238-252.

    [2]

    K. Deng and H.A. Levine, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl., 243 (2000), 85-126.

    [3]

    S. Eidelman, S. Kamin and F. Porper, Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity, Asympotic Analysis, 22 (2000), 349-358.

    [4]

    D. Eidus, The Cauchy problem for the non-linear filtration equation in an inhomogeneous medium, J. Differential Equations, 84 (1990), 309-318.

    [5]

    R. Ferreira, A. de Pablo, G. Reyes and A. Sánchez, The interfaces of an inhomogeneous porous medium equation with convection, Comm. Partial Differential Equations, 31 (2006) 497-514.doi: 10.1080/03605300500481343.

    [6]

    H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.

    [7]

    S. Kamin, R. Kersner and A. Tessi, On the Cauchy problem for a class of parabolic equations with variable density, Atti Accad. Naz. Lincei Rend.Cl. Sci. Fis. Mat. Natur., 9 (1998), 279-298.

    [8]

    S. Kamin, A. Pozio and A. Tessi, Admissible conditions for parabolic equations degenerating at infinity, Algebra i Analiz, 19 (2007), 105-1221. (Russian) translation in St. Petersburg Math. J., 19 (2008), 239-251.doi: 10.1090/S1061-0022-08-00996-5.

    [9]

    S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., 16 (1963), 305-330.

    [10]

    H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev., 32 (1990), 262-288.doi: 10.1137/1032046.

    [11]

    G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Singapore, 1996.

    [12]

    A. V. Martynenko, A. F. Tedeev and V. N. Shramenko, The Cauchy problem for a degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data, Izvestiya: Mathematics, 76 (2012), 563-580.doi: 10.1070/IM2012v076n03ABEH002595.

    [13]

    A. de Pablo, G. Reyes and A. Sánchez, The Cauchy problem for a nonhomogeneous heat equation with reaction, Discrete and Continuous Dynamical Systems, 33 (2013), 643-662.

    [14]

    R. G. Pinsky, Existence and nonexistence of global solutions for $u_t=\Delta u+a(x)u^p$ in $\mathbbR^d$}, J. Differential Equations, 133 (1997), 152-177.doi: 10.1006/jdeq.1996.3196.

    [15]

    M. A. Pozio, F. Punzo and A. Tesei, Uniqueness and nonuniqueness of solutions to parabolic problems with singular coeffcients, Discrete and Continuous Dynamical Systems, 30 (2011), 891-916.doi: 10.3934/dcds.2011.30.891.

    [16]

    Y. W. Qi, The critical exponents of parabolic equations and blow-up in $R^n$, Proc. Roy. Soc. Edinburgh Sect. A, 128(1998), 123-136.doi: 10.1017/S0308210500027190.

    [17]

    G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density, Comm. Pure Appl. Anal., 8 (2009), 493-508.doi: 10.3934/cpaa.2009.8.493.

    [18]

    Y. Wang and Z. Xiang, The interfaces of an inhomogeneous non-Newtonian polytropic filtration equation with convection, IMA J. Appl. Math., (2013).doi: 10.1093/imamat/hxt043.

    [19]

    C. Wang and S. Zheng, Critical Fujita exponents of degenerate and singular parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 415-430.doi: 10.1017/S0308210500004637.

    [20]

    Z. Xiang, C. Mu and X. Hu, Support properties of solutions to a degenerate equation with absorption and variable density, Nonlinear Anal., 68 (2008), 1940-1953.doi: 10.1016/j.na.2007.01.021.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return