-
Previous Article
Multiple solutions for a class of nonlinear Neumann eigenvalue problems
- CPAA Home
- This Issue
-
Next Article
Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation
Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum
1. | Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037 |
2. | Department of Mathematics, Nanjing University, Nanjing 210093 |
3. | Department of Mathematics, Inha University, Incheon 402-751, South Korea |
References:
[1] |
R. A. Adams and J. F. Fournier, Sobolev Spaces, 2nd ed., Pure and Appl. Math. (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22. North-Holland Publishing Co., Amsterdam, 1990. |
[3] |
H. Beirão da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory, J. Math. Fluid Mech., 12 (2010), 397-411.
doi: 10.1007/2Fs00021-009-0295-4. |
[4] |
J.-S. Fan and F.-C. Li, Uniform local well-posedness to the density-dependent Navier-Stokes-Maxwell system,, \emph{Acta Appl. Math.}, ().
doi: 10.1007/s10440-013-9857-9. |
[5] |
J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2006. |
[6] |
S. Itoh, On the vanishing viscosity in the Cauchy problem for the equations of a nonhomogeneous incompressible fluid, Glasgow Math. J., 36 (1994), 123-129.
doi: 10.1017/S0017089500030639. |
[7] |
X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.
doi: 10.1016/j.jde.2012.08.02. |
[8] |
M. L. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.
doi: 10.1007/2Fs00205-010-0357-z. |
[9] |
T. Li and T. Qin, Physics and Partial Differential Equations, Volume 1. Translated from the Chinese original by Yachun Li. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012. |
[10] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, The Clarendon Press, Oxford University Press, New York, 1996. |
[11] |
E.-H. Lieb and M. Loss, Analysis, 2nd ed., American Mathematical Society, Providence, RI, 2001. |
[12] |
A. Lunardi, Interpolation Theory, 2nd ed., Lecture Notes. Scuola Normale Superiore di Pisa (New Series), Edizioni della Normale, Pisa, 2009. |
[13] |
T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.
doi: pii/S0022123685710129. |
[14] |
H. Wu, Strong solutions to the incompressible magnetohydrodynamic equations with vacuum, Comput. Math. Appl., 61 (2011), 2742-2753.
doi: 10.1016/j.camwa.2011.03.03. |
show all references
References:
[1] |
R. A. Adams and J. F. Fournier, Sobolev Spaces, 2nd ed., Pure and Appl. Math. (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22. North-Holland Publishing Co., Amsterdam, 1990. |
[3] |
H. Beirão da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory, J. Math. Fluid Mech., 12 (2010), 397-411.
doi: 10.1007/2Fs00021-009-0295-4. |
[4] |
J.-S. Fan and F.-C. Li, Uniform local well-posedness to the density-dependent Navier-Stokes-Maxwell system,, \emph{Acta Appl. Math.}, ().
doi: 10.1007/s10440-013-9857-9. |
[5] |
J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2006. |
[6] |
S. Itoh, On the vanishing viscosity in the Cauchy problem for the equations of a nonhomogeneous incompressible fluid, Glasgow Math. J., 36 (1994), 123-129.
doi: 10.1017/S0017089500030639. |
[7] |
X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.
doi: 10.1016/j.jde.2012.08.02. |
[8] |
M. L. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.
doi: 10.1007/2Fs00205-010-0357-z. |
[9] |
T. Li and T. Qin, Physics and Partial Differential Equations, Volume 1. Translated from the Chinese original by Yachun Li. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012. |
[10] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, The Clarendon Press, Oxford University Press, New York, 1996. |
[11] |
E.-H. Lieb and M. Loss, Analysis, 2nd ed., American Mathematical Society, Providence, RI, 2001. |
[12] |
A. Lunardi, Interpolation Theory, 2nd ed., Lecture Notes. Scuola Normale Superiore di Pisa (New Series), Edizioni della Normale, Pisa, 2009. |
[13] |
T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.
doi: pii/S0022123685710129. |
[14] |
H. Wu, Strong solutions to the incompressible magnetohydrodynamic equations with vacuum, Comput. Math. Appl., 61 (2011), 2742-2753.
doi: 10.1016/j.camwa.2011.03.03. |
[1] |
Jishan Fan, Tohru Ozawa. An approximation model for the density-dependent magnetohydrodynamic equations. Conference Publications, 2013, 2013 (special) : 207-216. doi: 10.3934/proc.2013.2013.207 |
[2] |
Weiping Yan. Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1359-1385. doi: 10.3934/dcds.2015.35.1359 |
[3] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[4] |
Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041 |
[5] |
Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133 |
[6] |
Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292 |
[7] |
Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813 |
[8] |
Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041 |
[9] |
Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395 |
[10] |
Jishan Fan, Tohru Ozawa. Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model. Conference Publications, 2011, 2011 (Special) : 400-409. doi: 10.3934/proc.2011.2011.400 |
[11] |
Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001 |
[12] |
Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic and Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743 |
[13] |
Jacques A. L. Silva, Flávia T. Giordani. Density-dependent dispersal in multiple species metapopulations. Mathematical Biosciences & Engineering, 2008, 5 (4) : 843-857. doi: 10.3934/mbe.2008.5.843 |
[14] |
Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure and Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373 |
[15] |
Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic and Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481 |
[16] |
Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083 |
[17] |
Pierre Degond, Silke Henkes, Hui Yu. Self-organized hydrodynamics with density-dependent velocity. Kinetic and Related Models, 2017, 10 (1) : 193-213. doi: 10.3934/krm.2017008 |
[18] |
J. X. Velasco-Hernández, M. Núñez-López, G. Ramírez-Santiago, M. Hernández-Rosales. On carrying-capacity construction, metapopulations and density-dependent mortality. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1099-1110. doi: 10.3934/dcdsb.2017054 |
[19] |
Baojun Song, Wen Du, Jie Lou. Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1651-1668. doi: 10.3934/mbe.2013.10.1651 |
[20] |
Xiaoli Li, Dehua Wang. Global solutions to the incompressible magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 763-783. doi: 10.3934/cpaa.2012.11.763 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]