\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum

Abstract Related Papers Cited by
  • In this paper we establish the global existence of strong solution to the density-dependent incompressible magnetohydrodynamic equations with vaccum in a bounded domain in $R^2$. Furthermore, the limit as the heat conductivity coefficient tends to zero is also obtained.
    Mathematics Subject Classification: Primary: 76W05; Secondary: 76D03, 76D09.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams and J. F. Fournier, Sobolev Spaces, 2nd ed., Pure and Appl. Math. (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003.

    [2]

    S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22. North-Holland Publishing Co., Amsterdam, 1990.

    [3]

    H. Beirão da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory, J. Math. Fluid Mech., 12 (2010), 397-411.doi: 10.1007/2Fs00021-009-0295-4.

    [4]

    J.-S. Fan and F.-C. Li, Uniform local well-posedness to the density-dependent Navier-Stokes-Maxwell system, Acta Appl. Math., published online. doi: 10.1007/s10440-013-9857-9.

    [5]

    J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2006.

    [6]

    S. Itoh, On the vanishing viscosity in the Cauchy problem for the equations of a nonhomogeneous incompressible fluid, Glasgow Math. J., 36 (1994), 123-129.doi: 10.1017/S0017089500030639.

    [7]

    X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.doi: 10.1016/j.jde.2012.08.02.

    [8]

    M. L. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.doi: 10.1007/2Fs00205-010-0357-z.

    [9]

    T. Li and T. Qin, Physics and Partial Differential Equations, Volume 1. Translated from the Chinese original by Yachun Li. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012.

    [10]

    P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, The Clarendon Press, Oxford University Press, New York, 1996.

    [11]

    E.-H. Lieb and M. Loss, Analysis, 2nd ed., American Mathematical Society, Providence, RI, 2001.

    [12]

    A. Lunardi, Interpolation Theory, 2nd ed., Lecture Notes. Scuola Normale Superiore di Pisa (New Series), Edizioni della Normale, Pisa, 2009.

    [13]

    T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.doi: pii/S0022123685710129.

    [14]

    H. Wu, Strong solutions to the incompressible magnetohydrodynamic equations with vacuum, Comput. Math. Appl., 61 (2011), 2742-2753.doi: 10.1016/j.camwa.2011.03.03.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return