July  2014, 13(4): 1563-1591. doi: 10.3934/cpaa.2014.13.1563

Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data

1. 

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan

Received  September 2013 Revised  November 2013 Published  February 2014

In the present paper, we consider the Cauchy problem of a system of quadratic derivative nonlinear Schrödinger equations which was introduced by M. Colin and T. Colin (2004) as a model of laser-plasma interaction. The local existence of the solution of the system in the Sobolev space $H^s$ for $s > d/2+3$ is proved by M. Colin and T. Colin. We prove the well-posedness of the system with low regularity initial data. For some cases, we also prove the well-posedness and the scattering at the scaling critical regularity by using $U^2$ space and $V^2$ space which are applied to prove the well-posedness and the scattering for KP-II equation at the scaling critical regularity by Hadac, Herr and Koch (2009).
Citation: Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563
References:
[1]

I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part I, Int. Math. Res. Pap., 2006 (2006), 84pp.  Google Scholar

[2]

I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part II, Trans. Amer. Math. Soc., 360 (2008), 5925-5957. doi: 10.1090/S0002-9947-08-04471-1.  Google Scholar

[3]

H. Chihara, Local existence for semilinear Schrödinger equations, Math. Japon., 42 (1995), 35-51.  Google Scholar

[4]

H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann., 315 (1999), 529-567. doi: 10.1007/s002080050328.  Google Scholar

[5]

M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity,, preprint, ().   Google Scholar

[6]

M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differential Integral Equations., 17 (2004), 297-330.  Google Scholar

[7]

M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Nonlin\éaire., 26 (2009), 2211-2226. doi: 10.1016/j.anihpc.2009.01.011.  Google Scholar

[8]

M. Colin, T. Colin and M. Ohta, Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction, Funkcialaj Ekvacioj., 52 (2009), 371-380. doi: 10.1619/fesi.52.371.  Google Scholar

[9]

M. Colin and M. Ohta, Bifurcation from semitrivial standing waves and ground states for a system of nonlinear Schrödinger equations, SIAM J. Math. Anal., 44 (2012), 206-223. doi: 10.1137/110823808.  Google Scholar

[10]

J. Colliander, J. Delort, C. Kenig, and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325. doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[11]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436. doi: 10.1006/jfan.1997.3148.  Google Scholar

[12]

A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations,, preprint, ().   Google Scholar

[13]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non linéaie., 26 (2009), 917-941. doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[14]

M. Hadac, S. Herr and H. Koch, Errantum to "Well-posedness and scattering for the KP-II equation in a critical space'' [Ann. I. H. Poincaré-AN26 (3) (2009) 917-941], Ann. Inst. H. Poincaré Anal. Non linéaie., 27 (2010), 971-972. doi: 10.1016/j.anihpc.2010.01.006.  Google Scholar

[15]

N. Hayashi, C. Li and P. Naumkin, On a system of nonlinear Schrödinger equations in 2D, Differential Integral Equations., 24 (2011), 417-434.  Google Scholar

[16]

N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426. doi: 10.7153/dea-03-26.  Google Scholar

[17]

S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^{1}(T^{3})$, Duke. Math. J., 159 (2011), 329-349. doi: 10.1215/00127094-1415889.  Google Scholar

[18]

A. Ionescu and C. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc., 20 (2007), 753-798. doi: 10.1090/S0894-0347-06-00551-0.  Google Scholar

[19]

M. Ikeda, S. Katayama and H. Sunagawa, Null structure in a system of quadratic derivative nonlinear Schrödinger equations,, preprint, ().   Google Scholar

[20]

C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[21]

C. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134 (1998), 489-545. doi: 10.1007/s002220050272.  Google Scholar

[22]

H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., 2005 (2005), 1833-1847. doi: 10.1155/IMRN.2005.1833.  Google Scholar

[23]

S. Mizohata, On the Cauchy Problem, Notes and Reports in Mathematics in Science and Engineering, Science Press & Academic Press., 3 (1985), 177pp.  Google Scholar

[24]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.  Google Scholar

[25]

T. Ozawa and H. Sunagawa, Small data blow-up for a system of nonlinear Schrodinger equations, J. Math. Anal. Appl., 399 (2013), 147-155. doi: 10.1016/j.jmaa.2012.10.003.  Google Scholar

[26]

T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations,, preprint, ().   Google Scholar

[27]

A. Stefanov, On quadratic derivative Schrödinger equations in one space dimension, Trans. Amer. Math. Soc., 359 (2007), 3589-3607. doi: 10.1090/S0002-9947-07-04207-9.  Google Scholar

[28]

T. Tao, Global well-posedness of the Benjamin-Ono equation in $H^{1}(\R )$, J. Hyperbolic Differ. Equ., 1 (2004), 27-49. doi: 10.1142/S0219891604000032.  Google Scholar

show all references

References:
[1]

I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part I, Int. Math. Res. Pap., 2006 (2006), 84pp.  Google Scholar

[2]

I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part II, Trans. Amer. Math. Soc., 360 (2008), 5925-5957. doi: 10.1090/S0002-9947-08-04471-1.  Google Scholar

[3]

H. Chihara, Local existence for semilinear Schrödinger equations, Math. Japon., 42 (1995), 35-51.  Google Scholar

[4]

H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann., 315 (1999), 529-567. doi: 10.1007/s002080050328.  Google Scholar

[5]

M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity,, preprint, ().   Google Scholar

[6]

M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differential Integral Equations., 17 (2004), 297-330.  Google Scholar

[7]

M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Nonlin\éaire., 26 (2009), 2211-2226. doi: 10.1016/j.anihpc.2009.01.011.  Google Scholar

[8]

M. Colin, T. Colin and M. Ohta, Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction, Funkcialaj Ekvacioj., 52 (2009), 371-380. doi: 10.1619/fesi.52.371.  Google Scholar

[9]

M. Colin and M. Ohta, Bifurcation from semitrivial standing waves and ground states for a system of nonlinear Schrödinger equations, SIAM J. Math. Anal., 44 (2012), 206-223. doi: 10.1137/110823808.  Google Scholar

[10]

J. Colliander, J. Delort, C. Kenig, and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325. doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[11]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436. doi: 10.1006/jfan.1997.3148.  Google Scholar

[12]

A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations,, preprint, ().   Google Scholar

[13]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non linéaie., 26 (2009), 917-941. doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[14]

M. Hadac, S. Herr and H. Koch, Errantum to "Well-posedness and scattering for the KP-II equation in a critical space'' [Ann. I. H. Poincaré-AN26 (3) (2009) 917-941], Ann. Inst. H. Poincaré Anal. Non linéaie., 27 (2010), 971-972. doi: 10.1016/j.anihpc.2010.01.006.  Google Scholar

[15]

N. Hayashi, C. Li and P. Naumkin, On a system of nonlinear Schrödinger equations in 2D, Differential Integral Equations., 24 (2011), 417-434.  Google Scholar

[16]

N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426. doi: 10.7153/dea-03-26.  Google Scholar

[17]

S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^{1}(T^{3})$, Duke. Math. J., 159 (2011), 329-349. doi: 10.1215/00127094-1415889.  Google Scholar

[18]

A. Ionescu and C. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc., 20 (2007), 753-798. doi: 10.1090/S0894-0347-06-00551-0.  Google Scholar

[19]

M. Ikeda, S. Katayama and H. Sunagawa, Null structure in a system of quadratic derivative nonlinear Schrödinger equations,, preprint, ().   Google Scholar

[20]

C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[21]

C. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134 (1998), 489-545. doi: 10.1007/s002220050272.  Google Scholar

[22]

H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., 2005 (2005), 1833-1847. doi: 10.1155/IMRN.2005.1833.  Google Scholar

[23]

S. Mizohata, On the Cauchy Problem, Notes and Reports in Mathematics in Science and Engineering, Science Press & Academic Press., 3 (1985), 177pp.  Google Scholar

[24]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.  Google Scholar

[25]

T. Ozawa and H. Sunagawa, Small data blow-up for a system of nonlinear Schrodinger equations, J. Math. Anal. Appl., 399 (2013), 147-155. doi: 10.1016/j.jmaa.2012.10.003.  Google Scholar

[26]

T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations,, preprint, ().   Google Scholar

[27]

A. Stefanov, On quadratic derivative Schrödinger equations in one space dimension, Trans. Amer. Math. Soc., 359 (2007), 3589-3607. doi: 10.1090/S0002-9947-07-04207-9.  Google Scholar

[28]

T. Tao, Global well-posedness of the Benjamin-Ono equation in $H^{1}(\R )$, J. Hyperbolic Differ. Equ., 1 (2004), 27-49. doi: 10.1142/S0219891604000032.  Google Scholar

[1]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[2]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[3]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[4]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[5]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[6]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[7]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[8]

Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097

[9]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[10]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021205

[11]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[12]

Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021114

[13]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[14]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[15]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[16]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[17]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[18]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[19]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[20]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]