\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation

Abstract Related Papers Cited by
  • One of important problems in mathematical physics concerns derivation of point dynamics from field equations. The most common approach to this problem is based on WKB method. Here we describe a different method based on the concept of trajectory of concentration. When we applied this method to nonlinear Klein-Gordon equation, we derived relativistic Newton's law and Einstein's formula for inertial mass. Here we apply the same approach to nonlinear Schrodinger equation and derive non-relativistic Newton's law for the trajectory of concentration.
    Mathematics Subject Classification: Primary: 35Q55, 35Q60, 35Q70; Secondary: 70S05, 78A35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.doi: 10.1017/S030821050000353X.

    [2]

    J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential, Math. Res. Lett., 7 (2000), 329-342.doi: 10.4310/MRL.2000.v7.n3.a7.

    [3]

    W. Appel and M. Kiessling, Mass and spin renormalization in lorentz electrodynamics, Ann. Phys., 289 (2001), 24-83.doi: 10.1006/aphy.2000.6119.

    [4]

    A. Babin and A. Figotin, Wavepacket preservation under nonlinear evolution, Commun. Math. Phys., 278 (2008), 329-384.doi: 10.1007/s00220-007-0406-0.

    [5]

    A. Babin and A. Figotin, Nonlinear dynamics of a system of particle-like wavepackets, in Instability in Models Connected with Fluid Flows (Ed. C. Bardos and A. Fursikov), International Mathematical Series, Vol. 6, Springer, 2008.doi: 10.1007/978-0-387-75217-4_3.

    [6]

    A. Babin and A. Figotin, Wave-corpuscle mechanics for electric charges, J. Stat. Phys., 138 (2010), 912-954.doi: 10.1007/s10955-009-9877-z.

    [7]

    A. Babin and A. Figotin, Some mathematical problems in a neoclassical theory of electric charges, Discrete and Continuous Dynamical Systems A, 27 (2010), 1283-1326.doi: 10.3934/dcds.2010.27.1283.

    [8]

    A. Babin and A. Figotin, Electrodynamics of balanced charges, Found. Phys., 41 (2011), 242-260.doi: 10.1007/s10701-010-9502-7.

    [9]

    A. Babin and A. Figotin, Relativistic dynamics of accelerating particles derived from field equations, Found. Phys., 42 (2012), 996-1014.doi: 10.1007/s10701-012-9642-z.

    [10]

    A. Babin and A. Figotin, Relativistic point dynamics and Einstein formula as a property of localized solutions of a nonlinear Klein-Gordon equation, Comm. Math. Phys., 322 (2013), 453-499.doi: 10.1007/s00220-013-1732-z.

    [11]

    D. Bambusi and L. Galgani, Some rigorous results on the Pauli-Fierz model of classical electrodynamics, Ann. Inst. H. Poincaré, Phys. Théor, 58 (1993), 155-171.

    [12]

    A. Barut, Electrodynamics and Classical Theory of Fields and Particles, Dover, 1980.

    [13]

    H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555.

    [14]

    H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.doi: 10.1007/BF00250556.

    [15]

    M. Del Pino and J. Dolbeault, The optimal Euclidean $L_p$-Sobolev logarithmic inequality, J. Funct. Anal., 197 (2003), 151-161.doi: 10.1016/S0022-1236(02)00070-8.

    [16]

    I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Annals of Physics, 100 (1976), 62-93.

    [17]

    I. Bialynicki-Birula and J. Mycielski, Gaussons: Solitons of the logarithmic Schrödinger equation, Physica Scripta, 20 (1979), 539-544.doi: 10.1088/0031-8949/20/3-4/033.

    [18]

    T. Cazenave, Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal., 7 (1983), 1127-1140.doi: 10.1016/0362-546X(83)90022-6.

    [19]

    T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10 AMS, Providence RI, 2003.

    [20]

    T. Cazenave and A. Haraux, Équations d'évolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse Math., 5 (1980), 21-51.

    [21]

    T. Cazenave and P.-L.Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.

    [22]

    J. Frohlich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation, Comm. Math. Phys., 225 (2002), 223-274.doi: 10.1007/s002200100579.

    [23]

    H. Goldstein, C. Poole and J. Safko, Classical Mechanics, 3rd ed., Addison-Wesley, 2000.

    [24]

    C. Itzykson and J. Zuber, Quantum Field Theory, McGraw-Hill, 1980.

    [25]

    B. Jonsson, J. Frohlich, S. Gustafson and I. M. Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincare, 7 (2006), 621-660.doi: 10.1007/s00023-006-0263-y.

    [26]

    M. Heid, H. Heinz and T. Weth, Nonlinear eigenvalue problems of Schrnodinger type admitting eigenfunctions with given spectral characteristics, Math. Nachr., 242 (2002), 91-118.doi: 10.1002/1522-2616(200207)242:1<91::AID-MANA91>3.0.CO;2-Z.

    [27]

    J. Jackson, Classical Electrodynamics, 3rd Edition, Wiley, 1999.

    [28]

    T. Kato, Nonlinear Schrödinger equations, in Schrödinger Operators (H. Holden and A Jensen, eds.), Lecture Notes in Physics 345, Springer Verlag, 1989.doi: 10.1007/3-540-51783-9_22.

    [29]

    M. Kiessling, Electromagnetic Field Theory without Divergence Problems 1. The Born Legacy, J. Stat. Physics, 116 (2004), 1057-1122.doi: 10.1023/B:JOSS.0000037250.72634.2a.

    [30]

    A. Komech, Quantum Mechanics: Genesis and Achievements, Springer, Dordrecht, 2013.doi: 10.1007/978-94-007-5542-0.

    [31]

    A. Komech, M. Kunze and H. Spohn, Effective Dynamics for a mechanical particle coupled to a wave field, Comm. Math. Phys., 203 (1999), 1-19.doi: 10.1007/s002200050023.

    [32]

    C. Lanczos, The Variational Principles of Mechanics, 4th ed., Dover, 1986.

    [33]

    L. Landau and E. Lifshitz, The Classical Theory of Fields, Pergamon, Oxford, 1975.

    [34]

    E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law, Rev. Math. Phys., 21, 459-510 (2009).doi: 10.1142/S0129055X09003669.

    [35]

    V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics, Reidel, Boston, 1981.

    [36]

    C. Møller, The Theory of Relativity, 2nd edition, Oxford, 1982.

    [37]

    P. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. I, McGraw-Hill, 1953.

    [38]

    A. Nayfeh, Perturbation methods, Wiley, 1973.

    [39]

    P. Pearle, Classical electron models, in Electromagnetism Paths to Research (D. Teplitz ed.), Plenum, New York, 1982, pp. 211-295.

    [40]

    F. Rohrlich, Classical Charged Particles, Addison-Wesley, 3d ed., 2007.doi: 10.1142/6220.

    [41]

    J. Schwinger, Electromagnetic mass revisited, Foundations of Physics, 13 (1983), 373-383.doi: 10.1007/BF01906185.

    [42]

    H. Spohn, Dynamics of Charged Particles and Their Radiation Field, Cambridge Univ. Press, 2004.doi: 10.1017/CBO9780511535178.

    [43]

    J. Stachel, Einstein from B to Z, Burkhouser, 2002.

    [44]

    C. Sulem and P. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse, Springer, 1999.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return