-
Previous Article
Some results for pathwise uniqueness in Hilbert spaces
- CPAA Home
- This Issue
-
Next Article
Interaction of an elastic plate with a linearized inviscid incompressible fluid
Multiple Jacobian equations
1. | Section de Mathématiques, Station 8, EPFL, 1015 Lausanne |
2. | Department of Mathematics, UC Berkeley, Berkeley, CA, 94720, United States |
References:
[1] |
G. Csató, B. Dacorogna and O. Kneuss, The Pullback Equation for Differential Forms, Birkhäuser/Springer, New York, 2012.
doi: 10.1007/978-0-8176-8313-9. |
[2] |
B. Dacorogna and N. Fusco, Semi-continuité des fonctionnelles avec contraintes du type $\det\nabla u>0$, Boll. Un. Mat. Ital., 4-B (1985), 179-189. |
[3] |
B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 1-26. |
[4] |
J. Moser J, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294. |
show all references
References:
[1] |
G. Csató, B. Dacorogna and O. Kneuss, The Pullback Equation for Differential Forms, Birkhäuser/Springer, New York, 2012.
doi: 10.1007/978-0-8176-8313-9. |
[2] |
B. Dacorogna and N. Fusco, Semi-continuité des fonctionnelles avec contraintes du type $\det\nabla u>0$, Boll. Un. Mat. Ital., 4-B (1985), 179-189. |
[3] |
B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 1-26. |
[4] |
J. Moser J, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294. |
[1] |
Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663 |
[2] |
Angelo Favini, Rabah Labbas, Keddour Lemrabet, Stéphane Maingot, Hassan D. Sidibé. Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4991-5014. doi: 10.3934/dcds.2013.33.4991 |
[3] |
Niklas Hartung. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 445-467. doi: 10.3934/dcdsb.2015.20.445 |
[4] |
Louis Tebou. Simultaneous controllability of some uncoupled semilinear wave equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3721-3743. doi: 10.3934/dcds.2015.35.3721 |
[5] |
Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034 |
[6] |
Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355 |
[7] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[8] |
Ai-Li Yang, Yu-Jiang Wu. Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 839-853. doi: 10.3934/naco.2012.2.839 |
[9] |
Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899 |
[10] |
Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413 |
[11] |
Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113 |
[12] |
Huaiyu Jian, Xiaolin Liu, Hongjie Ju. The regularity for a class of singular differential equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1307-1319. doi: 10.3934/cpaa.2013.12.1307 |
[13] |
Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure and Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1 |
[14] |
Martí Prats. Beltrami equations in the plane and Sobolev regularity. Communications on Pure and Applied Analysis, 2018, 17 (2) : 319-332. doi: 10.3934/cpaa.2018018 |
[15] |
Zsolt Páles, Vera Zeidan. $V$-Jacobian and $V$-co-Jacobian for Lipschitzian maps. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 623-646. doi: 10.3934/dcds.2011.29.623 |
[16] |
Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397 |
[17] |
Ronen Peretz, Nguyen Van Chau, L. Andrew Campbell, Carlos Gutierrez. Iterated images and the plane Jacobian conjecture. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 455-461. doi: 10.3934/dcds.2006.16.455 |
[18] |
Jian-Feng Cai, Raymond H. Chan, Zuowei Shen. Simultaneous cartoon and texture inpainting. Inverse Problems and Imaging, 2010, 4 (3) : 379-395. doi: 10.3934/ipi.2010.4.379 |
[19] |
Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure and Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407 |
[20] |
Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]