\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions

Abstract Related Papers Cited by
  • We consider a non-isothermal modified viscous Cahn-Hilliard equation which was previously analyzed by M. Grasselli et al. Such an equation is characterized by an inertial term and it is coupled with a hyperbolic heat equation from the Maxwell-Cattaneo's law. We analyze the case in which the order parameter is subject to a dynamic boundary condition. This assumption requires a more refined strategy to extend the previous results to the present case. More precisely, we first prove the well-posedness for solutions with finite energy as well as for weak solutions. Then we establish the existence of a global attractor. Finally, we prove the convergence of any given weak solution to a single equilibrium by using a suitable Łojasiewicz-Simon inequality.
    Mathematics Subject Classification: Primary: 35B40, 35B41; Secondary: 37L99, 80A22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992.

    [2]

    A. Bonfoh, Existence and continuity of uniform exponential attractors for a singular perturbation of a generalized Cahn-Hilliard equation, Asymptot. Anal., 43 (2005), 233-247.

    [3]

    A. Bonfoh, M. Grasselli and A. Miranville, Long time behavior of a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Math. Methods Appl. Sci., 31 (2008), 695-734.doi: 10.1002/mma.938.

    [4]

    A. Bonfoh, M. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 663-695.doi: 10.1007/s00030-010-0075-0.

    [5]

    A. Bonfoh, M. Grasselli and A. Miranville, Inertial manifolds for a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Topol. Methods Nonlinear Anal., 35 (2010), 155-185.

    [6]

    C. Cavaterra, C. G. Gal and M. Grasselli, Cahn-Hilliard equations with memory and dynamic boundary conditions, Asymptot. Anal., 71 (2011), 123-162.

    [7]

    L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.doi: 10.1007/s00032-011-0165-4.

    [8]

    R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462.doi: 10.1002/mana.200410431.

    [9]

    E. Feireisl and F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dynam. Differential Equations, 12 (2000), 647-673.doi: 10.1023/A:1026467729263.

    [10]

    H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79 (1997), 893-896.

    [11]

    H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54.

    [12]

    C. G. Gal, Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differential Equations, 12 (2007), 1241-1274.

    [13]

    C. G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn-Hilliard equation with dynamic boundary conditions, Dyn. Partial Differ. Equ., 5 (2008), 39-67.doi: 10.4310/DPDE.2008.v5.n1.a2.

    [14]

    C. G. Gal and M. Grasselli, Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1581-1610.doi: 10.3934/dcdsb.2013.18.1581.

    [15]

    C. G. Gal and A. Miranville, Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009), 1738-1766.doi: 10.1016/j.nonrwa.2008.02.013.

    [16]

    C. G. Gal and A. Miranville, Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 113-147.doi: 10.3934/dcdss.2009.2.113.

    [17]

    C. G. Gal and H. Wu, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst. Ser. A, 22 (2008), 1041-1063.doi: 10.3934/dcds.2008.22.1041.

    [18]

    P. Galenko, Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system, Phys. Lett. A, 287 (2001), 190-197.

    [19]

    P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125 (13 pp.).

    [20]

    P. Galenko and D. Jou, Kinetic contribution to the fast spinodal decomposition controlled by diffusion, Phys. A, 388 (2009), 3113-3123.doi: 10.1016/j.physa.2009.04.003.

    [21]

    S. Gatti, M. Grasselli, A. Miranville and V. Pata, On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation, J. Math. Anal. Appl., 312 (2005), 230-247.doi: 10.1016/j.jmaa.2005.03.029.

    [22]

    S. Gatti, M. Grasselli, A. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3D, Math. Models Methods Appl. Sci., 15 (2005), 165-198.doi: 10.1142/S0218202505000327.

    [23]

    G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Comm. Pure Appl. Anal., 8 (2009), 881-912.doi: 10.3934/cpaa.2009.8.881.

    [24]

    G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712.doi: 10.1007/s11401-010-0602-7.

    [25]

    M. Grasselli and V. Pata, Asymptotic behavior of a parabolic-hyperbolic system, Comm. Pure Appl. Anal., 4 (2004), 849-881.doi: 10.3934/cpaa.2004.3.849.

    [26]

    M. Grasselli, H. Petzeltová and G. Schimperna, Convergence to stationary solutions for a parabolic-hyperbolic phase-field system, Commun. Pure Appl. Anal., 5 (2006), 827-838.doi: 10.3934/cpaa.2006.5.827.

    [27]

    M. Grasselli, H. Petzeltová and G. Schimperna, Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term, J. Differential Equations, 239 (2007), 38-60.doi: 10.1016/j.jde.2007.05.003.

    [28]

    M. Grasselli, G. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170.doi: 10.1080/03605300802608247.

    [29]

    M. Grasselli, G. Schimperna and S. Zelik, Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term, Nonlinearity, 23 (2010), 707-737.doi: 10.1088/0951-7715/23/3/016.

    [30]

    M. Grasselli, G. Schimperna, A. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Equ., 9 (2009), 371-404.doi: 10.1007/s00028-009-0017-7.

    [31]

    A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9 (1999), 95-124.doi: 10.1007/s005260050133.

    [32]

    A. Haraux and M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptot. Anal., 26 (2001), 21-36.

    [33]

    S.-Z. Huang and P. Takáč, Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Anal., 46 (2001), 675-698.doi: 10.1016/S0362-546X(00)00145-0.

    [34]

    M. B. Kania, Global attractor for the perturbed viscous Cahn-Hilliard equation, Colloq. Math., 109 (2007), 217-229.doi: 10.4064/cm109-2-4.

    [35]

    R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions, Comput. Phys. Commun., 133 (2001), 139-157.doi: 10.1016/S0010-4655(00)00159-4.

    [36]

    A. Miranville amd S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735.doi: 10.1002/mma.590.

    [37]

    A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 275-310.doi: 10.3934/dcds.2010.28.275.

    [38]

    P. Monk, Finite Element Methods for Maxwell's Equations, Clarendon Press, Oxford, 2003.doi: 10.1093/acprof:oso/9780198508885.001.0001.

    [39]

    A. Novick-Cohen, On the viscous Cahn-Hilliard equation in Material instabilities in continuum mechanics (Edinburgh, 1985-1986),

    [40]

    A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8 (1998), 965-985.

    [41]

    A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations: Evolutionary Equations, Vol. IV, Elsevier/North-Holland, Amsterdam, (2008), 201-228.doi: 10.1016/S1874-5717(08)00004-2.

    [42]

    V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486.doi: 10.3934/cpaa.2007.6.481.

    [43]

    J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Ann. Mat. Pura Appl., 185 (2006), 627-648.doi: 10.1007/s10231-005-0175-3.

    [44]

    R. Racke and S. Zheng, The Cahn-Hilliard equation with dynamical boundary conditions, Adv. Differential Equations, 8 (2003), 83-110.

    [45]

    A. Segatti, On the hyperbolic relaxation of the Cahn-Hilliard equation in 3D: approximation and long time behaviour, Math. Models Methods Appl. Sci., 17 (2007), 411-437.doi: 10.1142/S0218202507001978.

    [46]

    J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary condition, Nonlinear Anal. T.M.A., 72 (2010), 3028-3048.doi: 10.1016/j.na.2009.11.043.

    [47]

    B. Straughan, Heat Waves, Appl. Math. Sci., 177, Springer, New York, 2011.

    [48]

    R. Temam, Infinite Dimensional Dynamical System in Mechanics and Physics, Appl. Math. Sci. 68, Springer, New York, 1988.doi: 10.1007/978-1-4684-0313-8.

    [49]

    H. Wu, Convergence to equilibrium for a Cahn-Hilliard model with the Wentzell boundary condition, Asymptotic Analysis, 54 (2007), 71-92.

    [50]

    H. Wu, M. Grasselli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions, Math. Models Methods Appl. Sci., 17 (2007), 125-153.doi: 10.1142/S0218202507001851.

    [51]

    H. Wu, M. Grasselli and S. Zheng, Convergence to equilibrium for a nonlinear parabolic-hyperbolic phase-field system with dynamic boundary condition, J. Math. Anal. Appl., 329 (2007), 948-976.doi: 10.1016/j.jmaa.2006.07.011.

    [52]

    H. Wu and S. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary condition, J. Differential Equations, 204 (2004), 511-531.doi: 10.1016/j.jde.2004.05.004.

    [53]

    S. Zheng and A. Milani, Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations, Nonlinear Anal., 57 (2004), 843-877.doi: 10.1016/j.na.2004.03.023.

    [54]

    S. Zheng and A. Milani, Global attractors for singular perturbations of the Cahn-Hilliard equations, J. Differential Equations, 209 (2005), 101-139.doi: 10.1016/j.jde.2004.08.026.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return