September  2014, 13(5): 1855-1890. doi: 10.3934/cpaa.2014.13.1855

Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions

1. 

Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via C. Saldini, 50, I-20133 Milano

2. 

Dipartimento di Matematica, Politecnico di Milano, 20133 Milano

3. 

School of Mathematical Sciences, Fudan University, Han Dan Road 220, 200433 Shanghai

Received  October 2013 Revised  February 2014 Published  June 2014

We consider a non-isothermal modified viscous Cahn-Hilliard equation which was previously analyzed by M. Grasselli et al. Such an equation is characterized by an inertial term and it is coupled with a hyperbolic heat equation from the Maxwell-Cattaneo's law. We analyze the case in which the order parameter is subject to a dynamic boundary condition. This assumption requires a more refined strategy to extend the previous results to the present case. More precisely, we first prove the well-posedness for solutions with finite energy as well as for weak solutions. Then we establish the existence of a global attractor. Finally, we prove the convergence of any given weak solution to a single equilibrium by using a suitable Łojasiewicz-Simon inequality.
Citation: Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992.

[2]

A. Bonfoh, Existence and continuity of uniform exponential attractors for a singular perturbation of a generalized Cahn-Hilliard equation, Asymptot. Anal., 43 (2005), 233-247.

[3]

A. Bonfoh, M. Grasselli and A. Miranville, Long time behavior of a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Math. Methods Appl. Sci., 31 (2008), 695-734. doi: 10.1002/mma.938.

[4]

A. Bonfoh, M. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 663-695. doi: 10.1007/s00030-010-0075-0.

[5]

A. Bonfoh, M. Grasselli and A. Miranville, Inertial manifolds for a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Topol. Methods Nonlinear Anal., 35 (2010), 155-185.

[6]

C. Cavaterra, C. G. Gal and M. Grasselli, Cahn-Hilliard equations with memory and dynamic boundary conditions, Asymptot. Anal., 71 (2011), 123-162.

[7]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596. doi: 10.1007/s00032-011-0165-4.

[8]

R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.

[9]

E. Feireisl and F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dynam. Differential Equations, 12 (2000), 647-673. doi: 10.1023/A:1026467729263.

[10]

H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79 (1997), 893-896.

[11]

H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54.

[12]

C. G. Gal, Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differential Equations, 12 (2007), 1241-1274.

[13]

C. G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn-Hilliard equation with dynamic boundary conditions, Dyn. Partial Differ. Equ., 5 (2008), 39-67. doi: 10.4310/DPDE.2008.v5.n1.a2.

[14]

C. G. Gal and M. Grasselli, Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1581-1610. doi: 10.3934/dcdsb.2013.18.1581.

[15]

C. G. Gal and A. Miranville, Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009), 1738-1766. doi: 10.1016/j.nonrwa.2008.02.013.

[16]

C. G. Gal and A. Miranville, Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 113-147. doi: 10.3934/dcdss.2009.2.113.

[17]

C. G. Gal and H. Wu, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst. Ser. A, 22 (2008), 1041-1063. doi: 10.3934/dcds.2008.22.1041.

[18]

P. Galenko, Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system, Phys. Lett. A, 287 (2001), 190-197.

[19]

P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125 (13 pp.).

[20]

P. Galenko and D. Jou, Kinetic contribution to the fast spinodal decomposition controlled by diffusion, Phys. A, 388 (2009), 3113-3123. doi: 10.1016/j.physa.2009.04.003.

[21]

S. Gatti, M. Grasselli, A. Miranville and V. Pata, On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation, J. Math. Anal. Appl., 312 (2005), 230-247. doi: 10.1016/j.jmaa.2005.03.029.

[22]

S. Gatti, M. Grasselli, A. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3D, Math. Models Methods Appl. Sci., 15 (2005), 165-198. doi: 10.1142/S0218202505000327.

[23]

G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Comm. Pure Appl. Anal., 8 (2009), 881-912. doi: 10.3934/cpaa.2009.8.881.

[24]

G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712. doi: 10.1007/s11401-010-0602-7.

[25]

M. Grasselli and V. Pata, Asymptotic behavior of a parabolic-hyperbolic system, Comm. Pure Appl. Anal., 4 (2004), 849-881. doi: 10.3934/cpaa.2004.3.849.

[26]

M. Grasselli, H. Petzeltová and G. Schimperna, Convergence to stationary solutions for a parabolic-hyperbolic phase-field system, Commun. Pure Appl. Anal., 5 (2006), 827-838. doi: 10.3934/cpaa.2006.5.827.

[27]

M. Grasselli, H. Petzeltová and G. Schimperna, Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term, J. Differential Equations, 239 (2007), 38-60. doi: 10.1016/j.jde.2007.05.003.

[28]

M. Grasselli, G. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170. doi: 10.1080/03605300802608247.

[29]

M. Grasselli, G. Schimperna and S. Zelik, Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term, Nonlinearity, 23 (2010), 707-737. doi: 10.1088/0951-7715/23/3/016.

[30]

M. Grasselli, G. Schimperna, A. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Equ., 9 (2009), 371-404. doi: 10.1007/s00028-009-0017-7.

[31]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9 (1999), 95-124. doi: 10.1007/s005260050133.

[32]

A. Haraux and M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptot. Anal., 26 (2001), 21-36.

[33]

S.-Z. Huang and P. Takáč, Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Anal., 46 (2001), 675-698. doi: 10.1016/S0362-546X(00)00145-0.

[34]

M. B. Kania, Global attractor for the perturbed viscous Cahn-Hilliard equation, Colloq. Math., 109 (2007), 217-229. doi: 10.4064/cm109-2-4.

[35]

R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions, Comput. Phys. Commun., 133 (2001), 139-157. doi: 10.1016/S0010-4655(00)00159-4.

[36]

A. Miranville amd S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735. doi: 10.1002/mma.590.

[37]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 275-310. doi: 10.3934/dcds.2010.28.275.

[38]

P. Monk, Finite Element Methods for Maxwell's Equations, Clarendon Press, Oxford, 2003. doi: 10.1093/acprof:oso/9780198508885.001.0001.

[39]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation in Material instabilities in continuum mechanics (Edinburgh, 1985-1986),

[40]

A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8 (1998), 965-985.

[41]

A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations: Evolutionary Equations, Vol. IV, Elsevier/North-Holland, Amsterdam, (2008), 201-228. doi: 10.1016/S1874-5717(08)00004-2.

[42]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486. doi: 10.3934/cpaa.2007.6.481.

[43]

J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Ann. Mat. Pura Appl., 185 (2006), 627-648. doi: 10.1007/s10231-005-0175-3.

[44]

R. Racke and S. Zheng, The Cahn-Hilliard equation with dynamical boundary conditions, Adv. Differential Equations, 8 (2003), 83-110.

[45]

A. Segatti, On the hyperbolic relaxation of the Cahn-Hilliard equation in 3D: approximation and long time behaviour, Math. Models Methods Appl. Sci., 17 (2007), 411-437. doi: 10.1142/S0218202507001978.

[46]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary condition, Nonlinear Anal. T.M.A., 72 (2010), 3028-3048. doi: 10.1016/j.na.2009.11.043.

[47]

B. Straughan, Heat Waves, Appl. Math. Sci., 177, Springer, New York, 2011.

[48]

R. Temam, Infinite Dimensional Dynamical System in Mechanics and Physics, Appl. Math. Sci. 68, Springer, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[49]

H. Wu, Convergence to equilibrium for a Cahn-Hilliard model with the Wentzell boundary condition, Asymptotic Analysis, 54 (2007), 71-92.

[50]

H. Wu, M. Grasselli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions, Math. Models Methods Appl. Sci., 17 (2007), 125-153. doi: 10.1142/S0218202507001851.

[51]

H. Wu, M. Grasselli and S. Zheng, Convergence to equilibrium for a nonlinear parabolic-hyperbolic phase-field system with dynamic boundary condition, J. Math. Anal. Appl., 329 (2007), 948-976. doi: 10.1016/j.jmaa.2006.07.011.

[52]

H. Wu and S. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary condition, J. Differential Equations, 204 (2004), 511-531. doi: 10.1016/j.jde.2004.05.004.

[53]

S. Zheng and A. Milani, Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations, Nonlinear Anal., 57 (2004), 843-877. doi: 10.1016/j.na.2004.03.023.

[54]

S. Zheng and A. Milani, Global attractors for singular perturbations of the Cahn-Hilliard equations, J. Differential Equations, 209 (2005), 101-139. doi: 10.1016/j.jde.2004.08.026.

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992.

[2]

A. Bonfoh, Existence and continuity of uniform exponential attractors for a singular perturbation of a generalized Cahn-Hilliard equation, Asymptot. Anal., 43 (2005), 233-247.

[3]

A. Bonfoh, M. Grasselli and A. Miranville, Long time behavior of a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Math. Methods Appl. Sci., 31 (2008), 695-734. doi: 10.1002/mma.938.

[4]

A. Bonfoh, M. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 663-695. doi: 10.1007/s00030-010-0075-0.

[5]

A. Bonfoh, M. Grasselli and A. Miranville, Inertial manifolds for a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Topol. Methods Nonlinear Anal., 35 (2010), 155-185.

[6]

C. Cavaterra, C. G. Gal and M. Grasselli, Cahn-Hilliard equations with memory and dynamic boundary conditions, Asymptot. Anal., 71 (2011), 123-162.

[7]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596. doi: 10.1007/s00032-011-0165-4.

[8]

R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.

[9]

E. Feireisl and F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dynam. Differential Equations, 12 (2000), 647-673. doi: 10.1023/A:1026467729263.

[10]

H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79 (1997), 893-896.

[11]

H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54.

[12]

C. G. Gal, Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differential Equations, 12 (2007), 1241-1274.

[13]

C. G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn-Hilliard equation with dynamic boundary conditions, Dyn. Partial Differ. Equ., 5 (2008), 39-67. doi: 10.4310/DPDE.2008.v5.n1.a2.

[14]

C. G. Gal and M. Grasselli, Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1581-1610. doi: 10.3934/dcdsb.2013.18.1581.

[15]

C. G. Gal and A. Miranville, Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009), 1738-1766. doi: 10.1016/j.nonrwa.2008.02.013.

[16]

C. G. Gal and A. Miranville, Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 113-147. doi: 10.3934/dcdss.2009.2.113.

[17]

C. G. Gal and H. Wu, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst. Ser. A, 22 (2008), 1041-1063. doi: 10.3934/dcds.2008.22.1041.

[18]

P. Galenko, Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system, Phys. Lett. A, 287 (2001), 190-197.

[19]

P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125 (13 pp.).

[20]

P. Galenko and D. Jou, Kinetic contribution to the fast spinodal decomposition controlled by diffusion, Phys. A, 388 (2009), 3113-3123. doi: 10.1016/j.physa.2009.04.003.

[21]

S. Gatti, M. Grasselli, A. Miranville and V. Pata, On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation, J. Math. Anal. Appl., 312 (2005), 230-247. doi: 10.1016/j.jmaa.2005.03.029.

[22]

S. Gatti, M. Grasselli, A. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3D, Math. Models Methods Appl. Sci., 15 (2005), 165-198. doi: 10.1142/S0218202505000327.

[23]

G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Comm. Pure Appl. Anal., 8 (2009), 881-912. doi: 10.3934/cpaa.2009.8.881.

[24]

G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712. doi: 10.1007/s11401-010-0602-7.

[25]

M. Grasselli and V. Pata, Asymptotic behavior of a parabolic-hyperbolic system, Comm. Pure Appl. Anal., 4 (2004), 849-881. doi: 10.3934/cpaa.2004.3.849.

[26]

M. Grasselli, H. Petzeltová and G. Schimperna, Convergence to stationary solutions for a parabolic-hyperbolic phase-field system, Commun. Pure Appl. Anal., 5 (2006), 827-838. doi: 10.3934/cpaa.2006.5.827.

[27]

M. Grasselli, H. Petzeltová and G. Schimperna, Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term, J. Differential Equations, 239 (2007), 38-60. doi: 10.1016/j.jde.2007.05.003.

[28]

M. Grasselli, G. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170. doi: 10.1080/03605300802608247.

[29]

M. Grasselli, G. Schimperna and S. Zelik, Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term, Nonlinearity, 23 (2010), 707-737. doi: 10.1088/0951-7715/23/3/016.

[30]

M. Grasselli, G. Schimperna, A. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Equ., 9 (2009), 371-404. doi: 10.1007/s00028-009-0017-7.

[31]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9 (1999), 95-124. doi: 10.1007/s005260050133.

[32]

A. Haraux and M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptot. Anal., 26 (2001), 21-36.

[33]

S.-Z. Huang and P. Takáč, Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Anal., 46 (2001), 675-698. doi: 10.1016/S0362-546X(00)00145-0.

[34]

M. B. Kania, Global attractor for the perturbed viscous Cahn-Hilliard equation, Colloq. Math., 109 (2007), 217-229. doi: 10.4064/cm109-2-4.

[35]

R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions, Comput. Phys. Commun., 133 (2001), 139-157. doi: 10.1016/S0010-4655(00)00159-4.

[36]

A. Miranville amd S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735. doi: 10.1002/mma.590.

[37]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 275-310. doi: 10.3934/dcds.2010.28.275.

[38]

P. Monk, Finite Element Methods for Maxwell's Equations, Clarendon Press, Oxford, 2003. doi: 10.1093/acprof:oso/9780198508885.001.0001.

[39]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation in Material instabilities in continuum mechanics (Edinburgh, 1985-1986),

[40]

A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8 (1998), 965-985.

[41]

A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations: Evolutionary Equations, Vol. IV, Elsevier/North-Holland, Amsterdam, (2008), 201-228. doi: 10.1016/S1874-5717(08)00004-2.

[42]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486. doi: 10.3934/cpaa.2007.6.481.

[43]

J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Ann. Mat. Pura Appl., 185 (2006), 627-648. doi: 10.1007/s10231-005-0175-3.

[44]

R. Racke and S. Zheng, The Cahn-Hilliard equation with dynamical boundary conditions, Adv. Differential Equations, 8 (2003), 83-110.

[45]

A. Segatti, On the hyperbolic relaxation of the Cahn-Hilliard equation in 3D: approximation and long time behaviour, Math. Models Methods Appl. Sci., 17 (2007), 411-437. doi: 10.1142/S0218202507001978.

[46]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamical boundary condition, Nonlinear Anal. T.M.A., 72 (2010), 3028-3048. doi: 10.1016/j.na.2009.11.043.

[47]

B. Straughan, Heat Waves, Appl. Math. Sci., 177, Springer, New York, 2011.

[48]

R. Temam, Infinite Dimensional Dynamical System in Mechanics and Physics, Appl. Math. Sci. 68, Springer, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[49]

H. Wu, Convergence to equilibrium for a Cahn-Hilliard model with the Wentzell boundary condition, Asymptotic Analysis, 54 (2007), 71-92.

[50]

H. Wu, M. Grasselli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions, Math. Models Methods Appl. Sci., 17 (2007), 125-153. doi: 10.1142/S0218202507001851.

[51]

H. Wu, M. Grasselli and S. Zheng, Convergence to equilibrium for a nonlinear parabolic-hyperbolic phase-field system with dynamic boundary condition, J. Math. Anal. Appl., 329 (2007), 948-976. doi: 10.1016/j.jmaa.2006.07.011.

[52]

H. Wu and S. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary condition, J. Differential Equations, 204 (2004), 511-531. doi: 10.1016/j.jde.2004.05.004.

[53]

S. Zheng and A. Milani, Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations, Nonlinear Anal., 57 (2004), 843-877. doi: 10.1016/j.na.2004.03.023.

[54]

S. Zheng and A. Milani, Global attractors for singular perturbations of the Cahn-Hilliard equations, J. Differential Equations, 209 (2005), 101-139. doi: 10.1016/j.jde.2004.08.026.

[1]

Matthieu Brachet, Philippe Parnaudeau, Morgan Pierre. Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1987-2031. doi: 10.3934/dcdss.2022110

[2]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[3]

Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations and Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315

[4]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

[5]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[6]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[7]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic and Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[8]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[9]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[10]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[11]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[12]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[13]

Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405

[14]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[15]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[16]

Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113

[17]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[18]

Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2211-2229. doi: 10.3934/dcdss.2020186

[19]

Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859

[20]

Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]