September  2014, 13(5): 2005-2038. doi: 10.3934/cpaa.2014.13.2005

The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction

1. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 East Third Street, Rawles Hall, Bloomington, Indiana 47405, United States

2. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN, 47205

Received  August 2013 Revised  January 2014 Published  June 2014

In continuation with earlier works on the shallow water equations in a rectangle [10, 11], we investigate in this article the fully inviscid nonlinear shallow water equations in space dimension two in a rectangle $(0,1)_x \times (0,1)_y$. We address in this article the subcritical case, corresponding to the condition (3) below. Assuming space periodicity in the $y$-direction, we propose the boundary conditions for the $x$-direction which are suited for the subcritical case and develop, for this problem, results of existence, uniqueness and regularity of solutions locally in time for the corresponding initial and boundary value problem.
Citation: Aimin Huang, Roger Temam. The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2005-2038. doi: 10.3934/cpaa.2014.13.2005
References:
[1]

R. A. Adams, Sobolev Spaces, Series in Pure and Applied Mathematics, vol. 65, Academic Press, New York-London, 1975.

[2]

S. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations, Oxford University Press, 2007.

[3]

L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, 1978.

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations, North-Holland Publishing Co., Amsterdam, 1982, Translated from French.

[5]

Faà F.di Bruno, Note sur une nouvelle formule de calcul differentiel, vol. 1, London: John W. Parker and Son, West Strand, 1857.

[6]

K. O. Friedrichs, The identity of weak and strong extensions of differential operator, Trans. Amer. Math. Soc. 55 (1944), 132-151.

[7]

Loukas Grafakos, Classical Fourier Analysis, Second ed., Graduate Texts in Mathematics, vol. 249, Springer, 2008.

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, Pitman, Boston, 1985.

[9]

A. Huang, M. Petcu, and R. Temam, The one-dimensional supercritical shallow-water equations with topography, Annals of the University of Bucharest (Mathematical Series), 2 (LX) (2011), 63-82.

[10]

A. Huang, M. Petcu, and R. Temam, The nonlinear 2d supercritical inviscid shallow water equations in a rectangle, submitted.

[11]

A. Huang and R. Temam, The linearized 2d inviscid shallow water equations in a rectangle: boundary conditions and well-posedness, Archive for Rational Mechanics and Analysis, 211 (2014), 1027-1063 (English). doi: 10.1007/s00205-013-0702-0.

[12]

A. Huang and R. Temam, The linear hyperbolic initial boundary value problems in a domain with corners, accepted by Discrete and Continuous Dynamical System - Series B, see also arXiv:1310.5757.

[13]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math, 23 (1970), 277-298.

[14]

J. L. Lions, Problèmes aux Limites dans les Équations aux Dérivées Partielles, Montréal, Presses de l'Université de Montréal, 1965.

[15]

Ya. B. Lopatinskii, The mixed Cauchy-Dirichlet type problem for equations of hyperbolic type, Dopovfdf Akad. Nauk Ukrai''n. RSR Ser. A, 668 (1970), 592-594.

[16]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I, Trans. Amer. Math. Soc., 176 (1973), 141-165.

[17]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. II, Trans. Amer. Math. Soc., 198 (1974), 155-175.

[18]

M. Petcu and R. Temam, The one-dimensional shallow water equations with transparent boundary conditions, Math. Meth. Appl. Sci., (2011).

[19]

J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), 303-318.

[20]

A. Rousseau, R. Temam, and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case, J. Math. Pures Appl., 89 (2008), 297-319. doi: 10.1016/j.matpur.2007.12.001.

[21]

S. Smale, Smooth solutions of the heat and wave equations, Comment. Math. Helv., 55 (1980), 1-12. doi: 10.1007/BF02566671.

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Diff. Equations, 15 (2010), 1001-1031.

[23]

M. E. Taylor, Partial Differential Equations. III Nonlinear Equations, vol. 117, Applied Mathematical Sciences (Springer-Verlag), 1997.

[24]

R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations, J. Differential Equations, 43 (1982), 73-92. doi: 10.1016/0022-0396(82)90075-4.

[25]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1984 edition.

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Series in Pure and Applied Mathematics, vol. 65, Academic Press, New York-London, 1975.

[2]

S. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations, Oxford University Press, 2007.

[3]

L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, 1978.

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations, North-Holland Publishing Co., Amsterdam, 1982, Translated from French.

[5]

Faà F.di Bruno, Note sur une nouvelle formule de calcul differentiel, vol. 1, London: John W. Parker and Son, West Strand, 1857.

[6]

K. O. Friedrichs, The identity of weak and strong extensions of differential operator, Trans. Amer. Math. Soc. 55 (1944), 132-151.

[7]

Loukas Grafakos, Classical Fourier Analysis, Second ed., Graduate Texts in Mathematics, vol. 249, Springer, 2008.

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, Pitman, Boston, 1985.

[9]

A. Huang, M. Petcu, and R. Temam, The one-dimensional supercritical shallow-water equations with topography, Annals of the University of Bucharest (Mathematical Series), 2 (LX) (2011), 63-82.

[10]

A. Huang, M. Petcu, and R. Temam, The nonlinear 2d supercritical inviscid shallow water equations in a rectangle, submitted.

[11]

A. Huang and R. Temam, The linearized 2d inviscid shallow water equations in a rectangle: boundary conditions and well-posedness, Archive for Rational Mechanics and Analysis, 211 (2014), 1027-1063 (English). doi: 10.1007/s00205-013-0702-0.

[12]

A. Huang and R. Temam, The linear hyperbolic initial boundary value problems in a domain with corners, accepted by Discrete and Continuous Dynamical System - Series B, see also arXiv:1310.5757.

[13]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math, 23 (1970), 277-298.

[14]

J. L. Lions, Problèmes aux Limites dans les Équations aux Dérivées Partielles, Montréal, Presses de l'Université de Montréal, 1965.

[15]

Ya. B. Lopatinskii, The mixed Cauchy-Dirichlet type problem for equations of hyperbolic type, Dopovfdf Akad. Nauk Ukrai''n. RSR Ser. A, 668 (1970), 592-594.

[16]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I, Trans. Amer. Math. Soc., 176 (1973), 141-165.

[17]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. II, Trans. Amer. Math. Soc., 198 (1974), 155-175.

[18]

M. Petcu and R. Temam, The one-dimensional shallow water equations with transparent boundary conditions, Math. Meth. Appl. Sci., (2011).

[19]

J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), 303-318.

[20]

A. Rousseau, R. Temam, and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case, J. Math. Pures Appl., 89 (2008), 297-319. doi: 10.1016/j.matpur.2007.12.001.

[21]

S. Smale, Smooth solutions of the heat and wave equations, Comment. Math. Helv., 55 (1980), 1-12. doi: 10.1007/BF02566671.

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Diff. Equations, 15 (2010), 1001-1031.

[23]

M. E. Taylor, Partial Differential Equations. III Nonlinear Equations, vol. 117, Applied Mathematical Sciences (Springer-Verlag), 1997.

[24]

R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations, J. Differential Equations, 43 (1982), 73-92. doi: 10.1016/0022-0396(82)90075-4.

[25]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1984 edition.

[1]

Marta Strani. Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1653-1667. doi: 10.3934/cpaa.2014.13.1653

[2]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[3]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[4]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[5]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[6]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001

[7]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[8]

Xiaoping Zhai, Hailong Ye. On global large energy solutions to the viscous shallow water equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4277-4293. doi: 10.3934/dcdsb.2020097

[9]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[10]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[11]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[12]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[13]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[14]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[15]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[16]

Peng-Fei Yao. On shallow shell equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 697-722. doi: 10.3934/dcdss.2009.2.697

[17]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[18]

Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1151-1195. doi: 10.3934/dcds.2011.31.1151

[19]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[20]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]