Citation: |
[1] |
T. Caraballo, M. J. Garrido-Atienza and J. Real, Asymptotic stability of nonlinear stochastic evolution equations, Stoch. Anal. Appl., 21 (2003), 301-327.doi: 10.1081/SAP-120019288. |
[2] |
T. Caraballo and K. Liu, Exponential stability of mild solutions of stochastic partial differential equations with delays, Stoch. Anal. Appl., 15 (1999), 743-763.doi: 10.1080/07362999908809633. |
[3] |
T. Caraballo, K. Liu and A. Truman, Stochastic functional partial differential equations: existence, uniqueness and asymptotic decay properties, Proc. Roy. Soc. Lond. A, 456 (2000), 1775-1802.doi: 10.1098/rspa.2000.0586. |
[4] |
T. Caraballo, J. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334 (2007), 1130-1145.doi: 10.1016/j.jmaa.2007.01.038. |
[5] |
H. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays, Proc. Indian Acad. Sci (Math. Sci), 122 (2012), 283-295.doi: 10.1007/s12044-012-0071-x. |
[6] |
V. Kolmanovskii and L. Shaikhet, A method of Lyapunov functionals construction for stochastic differential equations of neutral type, Differentialniye uravneniya, 31 (2002), 691-716 (in Russian). Translation in: Differential Equations, 31 (1996), 1819-1825. |
[7] |
V. Kolmanovskii and L. Shaikhet, Construction of Lyapunov functionals for stochastic hereditary systems: a survey of some recent results, Mathematical and Computer Modelling, 36 (1995), 1851-1857. |
[8] |
J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. anal. Appl., 342 (2008), 753-760.doi: 10.1016/j.jmaa.2007.11.019. |
[9] |
E. Pardoux, Equations aux dérivées partielles stochastiques nonlinéaires monotones, Ph.D thesis, Université Paris Sud, 1975. |
[10] |
G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Encyclopedia of mathematics and its applications, Cambridge University Press, 1992.doi: 10.1017/CBO9780511666223. |
[11] |
L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Difference Equations, Springer, London, Dordrecht, Heidelberg, New York, 2011.doi: 10.1007/978-0-85729-685-6. |
[12] |
L. Shaikhet, Modern state and development perspectives of Lyapunov functionals method in the stability theory of stochastic hereditary systems, Theory of Stochastic Processes, 2 (1996), 248-259. |
[13] |
L. Wan and J. Duan, Exponential stability of non-autonomous stochastic partial differential equations with finite memory, Statistics and Probability Letters, 78 (2008), 490-498.doi: 10.1016/j.spl.2007.08.003. |
[14] |
M. Wei and T. Zhang, Exponential stability for stochastic 2D-Navier-Stokes equations with time delay, Appl. Math. J. Chinese Univ., 24 (2009), 493-500 (in Chinese). |