September  2014, 13(5): 2115-2126. doi: 10.3934/cpaa.2014.13.2115

On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach

1. 

Department of Mathematics, Texas A\&M University, College Station, TX 77845, United States

2. 

University of Houston, Department of Mathematics, 4800 Calhoun Rd, Houston, Texas 77204 - 3008

Received  September 2013 Revised  January 2014 Published  June 2014

In this article we investigate, via numerical computations, the intersection properties of the nodal set of the eigenfunctions of the Laplace-Beltrami operator for smooth surfaces in $R^3$ (the nodal set of a continuous function is the set of those points at which the function vanishes). First, we briefly discuss the numerical solution of the eigenvalue/eigenfunction problem for the Laplace-Beltrami operator on bounded surfaces of $R^3$, and then consider some specific surfaces and visualize how the nodal lines intersect (or not) depending of the symmetries verified by the surface. After validating our computational methodology with the surface of a ring torus, we will investigate a simple surface without symmetry and observe that in that case the nodal set of the computed eigenfunctions consists of non intersecting lines, suggesting some conjecture. We observe also that for the above symmetry-free surface, the number of connected components of the nodal set varies non-monotonically with the rank of the associated eigenvalue (assuming that the eigenvalues are ordered by increasing value).
Citation: Andrea Bonito, Roland Glowinski. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2115-2126. doi: 10.3934/cpaa.2014.13.2115
References:
[1]

W. Bangerth, R. Hartmann and G. Kanschat, deal.II-a general purpose object oriented finite element library, ACM Trans. Math. Softw., 33 (2007), 24/1-24/27. doi: 10.1145/1268776.1268779.

[2]

A. Bonito, J. M. Cascón, P. Morin and R. H. Nochetto, AFEM for geometric PDE: The Laplace-Beltrami operator, in Analysis and Numerics of Partial Differential Equations, volume 4, pages 257-306. Springer INdAM Series, 2013. doi: 10.1007/978-88-470-2592-9_15.

[3]

A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal., 48 (2010), 734-771. doi: 10.1137/08072838X.

[4]

A. Bonito and J. E. Pasciak, Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator, Math. Comp., 81 (2012), 1263-1288. doi: 10.1090/S0025-5718-2011-02551-2.

[5]

A. Bonito and M. S. Pauletti, The step-38 tutorial progam: The laplace-beltrami operator, http://www.dealii.org.

[6]

S. Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv., 51 (1976), 43-55.

[7]

G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), 603-611. doi: 10.1007/BF01385643.

[8]

F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. I. Problem formulation and description of the algorithms, J. Numer. Math., 15 (2007), 181-208. doi: 10.1515/jnma.2007.009.

[9]

F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. II. Numerical experiments, J. Numer. Math., 15 (2007), 277-298. doi: 10.1515/jnum.2007.013.

[10]

R. Glowinski and D. C. Sorensen, Computing the eigenvalues of the Laplace-Beltrami operator on the surface of a torus: a numerical approach, in Partial Differential Equations, volume 16 of Comput. Methods Appl. Sci., pages 225-232. Springer, Dordrecht, 2008. doi: 10.1007/978-1-4020-8758-5_12.

[11]

V. Hernandez, J. E. Roman and V. Vicente, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), 351-362. doi: 10.1145/1089014.1089019.

[12]

R. Lai, Y. Shi, I. Dinov, T. F. Chan and A. W. Toga, Laplace-Beltrami nodal counts: a new signature for 3D shape analysis, in 2009 IEEE International symposium on biomedical imaging: From nano to macro, Vols 1 and 2, pages 694-697, 2009. IEEE Internaional Symposium on Biomedical Imaging-From Nano to Macro, Boston, MA, JUN 28-JUL 01, 2009.

[13]

R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide, volume 6 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. doi: 10.1137/1.9780898719628.

[14]

K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math., 98 (1976), 1059-1078.

show all references

References:
[1]

W. Bangerth, R. Hartmann and G. Kanschat, deal.II-a general purpose object oriented finite element library, ACM Trans. Math. Softw., 33 (2007), 24/1-24/27. doi: 10.1145/1268776.1268779.

[2]

A. Bonito, J. M. Cascón, P. Morin and R. H. Nochetto, AFEM for geometric PDE: The Laplace-Beltrami operator, in Analysis and Numerics of Partial Differential Equations, volume 4, pages 257-306. Springer INdAM Series, 2013. doi: 10.1007/978-88-470-2592-9_15.

[3]

A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal., 48 (2010), 734-771. doi: 10.1137/08072838X.

[4]

A. Bonito and J. E. Pasciak, Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator, Math. Comp., 81 (2012), 1263-1288. doi: 10.1090/S0025-5718-2011-02551-2.

[5]

A. Bonito and M. S. Pauletti, The step-38 tutorial progam: The laplace-beltrami operator, http://www.dealii.org.

[6]

S. Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv., 51 (1976), 43-55.

[7]

G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), 603-611. doi: 10.1007/BF01385643.

[8]

F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. I. Problem formulation and description of the algorithms, J. Numer. Math., 15 (2007), 181-208. doi: 10.1515/jnma.2007.009.

[9]

F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. II. Numerical experiments, J. Numer. Math., 15 (2007), 277-298. doi: 10.1515/jnum.2007.013.

[10]

R. Glowinski and D. C. Sorensen, Computing the eigenvalues of the Laplace-Beltrami operator on the surface of a torus: a numerical approach, in Partial Differential Equations, volume 16 of Comput. Methods Appl. Sci., pages 225-232. Springer, Dordrecht, 2008. doi: 10.1007/978-1-4020-8758-5_12.

[11]

V. Hernandez, J. E. Roman and V. Vicente, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), 351-362. doi: 10.1145/1089014.1089019.

[12]

R. Lai, Y. Shi, I. Dinov, T. F. Chan and A. W. Toga, Laplace-Beltrami nodal counts: a new signature for 3D shape analysis, in 2009 IEEE International symposium on biomedical imaging: From nano to macro, Vols 1 and 2, pages 694-697, 2009. IEEE Internaional Symposium on Biomedical Imaging-From Nano to Macro, Boston, MA, JUN 28-JUL 01, 2009.

[13]

R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide, volume 6 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. doi: 10.1137/1.9780898719628.

[14]

K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math., 98 (1976), 1059-1078.

[1]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[2]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[3]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[4]

Jan Bouwe van den Berg, Gabriel William Duchesne, Jean-Philippe Lessard. Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach. Journal of Computational Dynamics, 2022, 9 (2) : 253-278. doi: 10.3934/jcd.2022005

[5]

Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291

[6]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[7]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[8]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[9]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[10]

Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems and Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795

[11]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[12]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[13]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29 (3) : 2489-2516. doi: 10.3934/era.2020126

[14]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[15]

A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769

[16]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[17]

Juan Wen, Yaling He, Yinnian He, Kun Wang. Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1873-1894. doi: 10.3934/cpaa.2021074

[18]

Fan Chen, Ming Cui, Chenguang Zhou. Numerical analysis of two-dimensional unsaturated soil water flow problems with two-grid finite element methods. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022191

[19]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[20]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (152)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]