\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bounds on energy and enstrophy for the 3D Navier-Stokes-$\alpha$ and Leray-$\alpha$ models

Abstract Related Papers Cited by
  • We construct semi-integral curves which bound the projections of the global attractors of the 3D NS-$\alpha$ and 3D Leray-$\alpha$ sub-grid scale turbulence models in the plane spanned by their energy and enstrophy. We note the dependence of these bounds on the filter width parameter $\alpha$, and determine subregions where each quantity, energy and enstrophy, must decrease, while isolating one which is recurrent.
    Mathematics Subject Classification: Primary: 35Q30, 76F02.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge at the University Press, 1953.

    [2]

    V. Chepyzhov, E. S. Titi and M. Vishik, On the convergence of solutions of the 3D Leray-$\alpha$ model to the trajectory attractor of the 3D Navier-Stokes system, Discr. & Cont. Dyn. Systems A, 17 (2007), 481-500.

    [3]

    A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi, On a Leray-$\alpha$ model of turbulence, Royal Soc. A, Mathematical, Physical and Engineering Sciences, 461 (2005), 629-649.doi: 10.1098/rspa.2004.1373.

    [4]

    R. Dascaliuc, C. Foias and M. S. Jolly, Relations between energy and enstrophy on the global attractor of the 2-D Navier-Stokes equations, J. Dynam. Differential Equations, 17 (2005), 643-736.doi: 10.1007/s10884-005-8269-6.

    [5]

    R. Dascaliuc, C. Foias and M. S. Jolly, Universal bounds on the attractor of the Navier-Stokes equation in the energy, enstrophy plane, J. Math. Phys., 48 (2007), 065201.doi: 10.1063/1.2710349.

    [6]

    R. Dascaliuc, C. Foias and M. Jolly, Estimates on enstrophy, palinstrophy, and invariant measures for 2-d turbulence, J. Differential Eqns, 248 (2010), 792-819.doi: 10.1016/j.jde.2009.11.020.

    [7]

    C. Doering, The 3D Navier-Stokes problem, Annu. Rev. Fluid Mech, 41 (2009), 109-128.doi: 10.1146/annurev.fluid.010908.165218.

    [8]

    C. Foias, M. S. Jolly, O. P. Manley and R. Rosa, Statistical estimates for the Navier-Stokes equations and the Kraichnan theory of 2-D fully developed turbulence, J. Statist. Phys., 108 (2002), 591-645.doi: 10.1023/A:1015782025005.

    [9]

    C. Foias, M. S. Jolly, O. P. Manley, R. Rosa and R. Temam, Kolmogorov theory via finite-time averages, Phys. D, 212 (2005), 245-270.doi: 10.1016/j.physd.2005.10.002.

    [10]

    C. Foias, M. S. Jolly and M. Yang, On single mode forcing of the 2D-NSE, J. Dynam. Diff. Eqns., 25 (2013), 393-433.doi: 10.1007/s10884-013-9301-x.

    [11]

    C. Foias, D. D. Holm and E. S. Titi, The three-dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35.doi: 10.1023/A:1012984210582.

    [12]

    C. Foias, O. Manley, R. Rosa and R. Temam, Cascade of energy in turbulent flows, Comptes Rendus Acad. Sci. Paris, Serie I, 332 (2001), 509-514.doi: 10.1016/S0764-4442(01)01831-6.

    [13]

    C. Foias, O. Manley, R. Rosa and R. Temam, Estimates for the energy cascade in three-dimensional turbulent flows, Comptes Rendus Acad. Sci. Paris, Serie I, 333 (2001), 499-504.doi: 10.1016/S0764-4442(01)02008-0.

    [14]

    C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.doi: 10.1017/CBO9780511546754.

    [15]

    C. Foias and G. Prodi, Sur les solutions statistiques des equations de Navier-Stokes, Ann. Mat. Pura Appl., 111 (2001), 307-330.

    [16]

    D. D. Holm, Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid, Physica D, 133 (1999), 215-269.doi: 10.1016/S0167-2789(99)00093-7.

    [17]

    D. D. Holm, J. E. Marsden and T. Ratiu, Euler-Poincaré Equations in Geophysical Fluid Dynamics, In Proceedings of the Isaac Newton Institute Programme on the Mathematics of Atmospheric and Ocean Dynamics, Cambridge University Press.

    [18]

    M. Holst, E. Lunasin and G. Tsotgtgerel, Analytical study of generalized $\alpha$-models of turbulence, Journal of Nonlinear Science, 20 (2010), 523-567.doi: 10.1007/s00332-010-9066-x.

    [19]

    A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Proc. Roy. Soc. London Ser. A, 434 (1890, 1991), 9-13. Translated from the Russian by V. Levin, Turbulence and stochastic processes: Kolmogorov's ideas 50 years on.doi: 10.1098/rspa.1991.0075.

    [20]

    R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids, 5 (1962), 1374-1389.

    [21]

    C. E. Leith, Diffusion approximation for two-dimensional turbulence, Phys. Fluids, 11 (1968), 671-673.

    [22]

    L. Lu and C. Doering, Limits on enstrophy growth for solutions of the three-dimensional Navier-Stokes equations, Indiana Univ. Math J., 57 (2008), 2693-2727.doi: 10.1512/iumj.2008.57.3716.

    [23]

    E. Lunasin, S. Kurien, M. Taylor and E. S. Titi, A study of the Navier-Stokes-$\alpha$ model for two-dimensional turbulence, Journal of Turbulence, 8 (2007), 751-778.doi: 10.1080/14685240701439403.

    [24]

    E. Lunasin, S. Kurien and E. S. Titi, Spectral scaling of the Leray-$\alpha$ model for two-dimensional turbulence, Journal of Physics A: Math. Theor., 41 (2008), 344014.doi: 10.1088/1751-8113/41/34/344014.

    [25]

    M. Vishik, E. S. Titi and V. Chepyzhov, On convergence of trajectory attractors of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ approaches 0, Mathematicheskii Sbornik, 198 (2007), 3-36.doi: 10.1070/SM2007v198n12ABEH003902.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(234) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return