-
Previous Article
The existence and blow-up criterion of liquid crystals system in critical Besov space
- CPAA Home
- This Issue
-
Next Article
A pair of positive solutions for $(p,q)$-equations with combined nonlinearities
Diffusion effects in a superconductive model
1. | Univ. of Naples Federico II, Dept of Math and Appl, Via Claudio n. 21, 80125 Naples, Italy |
2. | Univ. of Naples Federico II, I.N.F.N., Sez. of Naples, Complesso MSA, V. Cintia, 80126 Naples, Italy |
References:
[1] |
T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sine-Gordon equation, Journal of Mathematical Physics, 51 (2010), 1-26. |
[2] |
A. Benabdallah, J. G. Caputo and A. C. Scott, Exponentially tapered josephson flux-flow oscillator, Phy. Rev. B, 54 (1996), 16139. |
[3] |
A. Benabdallah, J. G. Caputo and A. C. Scott, Laminar phase flow for an exponentially tapered josephson oscillator, J. Apl. Phys., 588 (2000), 3527. |
[4] |
S. Bondarenko and Nakagawa, SQUID-based magnetic microscope, in "Smart Materials for Ranking Systems," J. France et al (edition), Springer (2006), 195-201. |
[5] |
T. L. Boyadjiev, E. G. Semerdjieva and Yu. M. Shukrinov, Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities, Physica C, 460-462 (2007), 1317-1318. |
[6] |
G. Carapella, N. Martucciello and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions, PHYS REV B, 66 (2002), 134531. |
[7] |
J. Clarke, "SQUIDs for Everything," Nature Materials, 10 (2011). |
[8] |
J. Clarke, SQUIDs: Then and Now, chapter in BCS: 50 Years (eds. Leon N Cooper and Dmitri Feldman) World Scientific Publishing Co. Pte. Ltd., Singapore (2010). |
[9] |
S. A. Cybart et al., Dynes Series array of incommensurate superconducting quantum interference devices, Appl. Phys Lett, 93 (2008), 1-3. |
[10] |
A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions, Acta Appl. Math., 122 (2012), 255-267. |
[11] |
M. Dehghan and A. Shokri, A numerical method for solution of the two dimensional sine- Gordon equation using the radial basis functions, Mat Comp in Simulation, 79 (2008), 700-715. |
[12] |
M. De Angelis, On a model of superconductivity and biology, Advances and Applications in Mathematical Sciences, 7 (2010), 41-50. |
[13] |
M. De Angelis, Asymptotic analysis for the strip problem related to a parabolic third-order operator, Applied Mathematics Letters, 14 (2001), 425-430. |
[14] |
M. De Angelis, A priori estimates for excitable models, Meccanica (2013).
doi: 10.1007/s11012-013-9763-2. |
[15] |
M. De Angelis, On exponentially shaped Josephson junctions, Acta appl. Math, 122 (2012), 179-189 |
[16] |
M. De Angelis, On a parabolic operator of dissipative systems,, submitted to Acta appl. Math, ().
|
[17] |
M. De Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect, J. Math. Anal. Appl., 404 (2013), 477-490.
doi: 10.1016/j.jmaa.2013.03.029. |
[18] |
M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models, in "Mathematical Physics Models and Engineering Sciences" (ed. Liguori), Italy, (2008), 191-202. |
[19] |
M. De Angelis and E. Mazziotti, Non linear travelling waves with diffusion, Rend. Acc. Sc. Fis. Mat. Napoli, 73 (2006), 23-36. |
[20] |
De Angelis, A. M. Monte and P. M. Renno, On fast and slow times in models with diffusion, Math Models and Methods in Applied Sciences, 12 (2002), 1741-1749. |
[21] |
M. De Angelis and P. Renno, Asymptotic effects of boundary perturbations in excitable systems, (2013),, submitted to Discrete and Continuous Dynamical Systems - B. Available from: \url{http://arxiv.org/pdf/1304.3891v1.pdf}, ().
|
[22] |
M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation, Ric Mat, 57 (2008), 95-109. |
[23] |
De Angelis and P. M. Renno, Diffusion and wave behaviour in linear Voigt model, C. R. Mecanique, 330 (2002), 21-26 |
[24] |
Gutman S. Junhohg Ha, Identification problem for damped sine Gordon equation with point sources, J. Math. Anal. Appl., 375 (2011), 648-666.
doi: 10.1016/j.jmaa.2010.10.006. |
[25] |
E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting," The MIT press, England, 2007. |
[26] |
M. Jaworski, "Fluxon Dynamics in Exponentially Shaped Josephson Junction," Phy. rev. B, 71 (2005), 1-6. |
[27] |
M. Jaworski, Exponentially tapered Josephson junction: some analytic results, Theor and Math Phys, 144 (2005), 1176-1180. |
[28] |
J. McCall and Lindsa, Superconductor cables: Advanced capabilities for the smart grid, Utility Automation Engineering TD, 13 (2008), 54. |
[29] |
J. D. Murray, "Mathematical Biology. I. An Introduction," Springer-Verlag, N.Y, 2002. |
[30] |
S. Rionero, Asymptotic behaviour of solutions to a nonlinear third order P.D.E modeling physical phenomena, Boll Unione Mat Ital, 9 (2012), 451-468. |
[31] |
H. Rogalla and P. H. Kes, "100 Years of Superconductivity," CRC Press, (2012). |
[32] |
A.C. Scott, "The Nonlinear Universe: Chaos, Emergence, Life," Springer-Verlag, 2007. |
[33] |
A.C. Scott, "Neuroscience A mathematical Primer," Springer-Verlag, 2002. |
show all references
References:
[1] |
T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sine-Gordon equation, Journal of Mathematical Physics, 51 (2010), 1-26. |
[2] |
A. Benabdallah, J. G. Caputo and A. C. Scott, Exponentially tapered josephson flux-flow oscillator, Phy. Rev. B, 54 (1996), 16139. |
[3] |
A. Benabdallah, J. G. Caputo and A. C. Scott, Laminar phase flow for an exponentially tapered josephson oscillator, J. Apl. Phys., 588 (2000), 3527. |
[4] |
S. Bondarenko and Nakagawa, SQUID-based magnetic microscope, in "Smart Materials for Ranking Systems," J. France et al (edition), Springer (2006), 195-201. |
[5] |
T. L. Boyadjiev, E. G. Semerdjieva and Yu. M. Shukrinov, Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities, Physica C, 460-462 (2007), 1317-1318. |
[6] |
G. Carapella, N. Martucciello and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions, PHYS REV B, 66 (2002), 134531. |
[7] |
J. Clarke, "SQUIDs for Everything," Nature Materials, 10 (2011). |
[8] |
J. Clarke, SQUIDs: Then and Now, chapter in BCS: 50 Years (eds. Leon N Cooper and Dmitri Feldman) World Scientific Publishing Co. Pte. Ltd., Singapore (2010). |
[9] |
S. A. Cybart et al., Dynes Series array of incommensurate superconducting quantum interference devices, Appl. Phys Lett, 93 (2008), 1-3. |
[10] |
A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions, Acta Appl. Math., 122 (2012), 255-267. |
[11] |
M. Dehghan and A. Shokri, A numerical method for solution of the two dimensional sine- Gordon equation using the radial basis functions, Mat Comp in Simulation, 79 (2008), 700-715. |
[12] |
M. De Angelis, On a model of superconductivity and biology, Advances and Applications in Mathematical Sciences, 7 (2010), 41-50. |
[13] |
M. De Angelis, Asymptotic analysis for the strip problem related to a parabolic third-order operator, Applied Mathematics Letters, 14 (2001), 425-430. |
[14] |
M. De Angelis, A priori estimates for excitable models, Meccanica (2013).
doi: 10.1007/s11012-013-9763-2. |
[15] |
M. De Angelis, On exponentially shaped Josephson junctions, Acta appl. Math, 122 (2012), 179-189 |
[16] |
M. De Angelis, On a parabolic operator of dissipative systems,, submitted to Acta appl. Math, ().
|
[17] |
M. De Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect, J. Math. Anal. Appl., 404 (2013), 477-490.
doi: 10.1016/j.jmaa.2013.03.029. |
[18] |
M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models, in "Mathematical Physics Models and Engineering Sciences" (ed. Liguori), Italy, (2008), 191-202. |
[19] |
M. De Angelis and E. Mazziotti, Non linear travelling waves with diffusion, Rend. Acc. Sc. Fis. Mat. Napoli, 73 (2006), 23-36. |
[20] |
De Angelis, A. M. Monte and P. M. Renno, On fast and slow times in models with diffusion, Math Models and Methods in Applied Sciences, 12 (2002), 1741-1749. |
[21] |
M. De Angelis and P. Renno, Asymptotic effects of boundary perturbations in excitable systems, (2013),, submitted to Discrete and Continuous Dynamical Systems - B. Available from: \url{http://arxiv.org/pdf/1304.3891v1.pdf}, ().
|
[22] |
M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation, Ric Mat, 57 (2008), 95-109. |
[23] |
De Angelis and P. M. Renno, Diffusion and wave behaviour in linear Voigt model, C. R. Mecanique, 330 (2002), 21-26 |
[24] |
Gutman S. Junhohg Ha, Identification problem for damped sine Gordon equation with point sources, J. Math. Anal. Appl., 375 (2011), 648-666.
doi: 10.1016/j.jmaa.2010.10.006. |
[25] |
E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting," The MIT press, England, 2007. |
[26] |
M. Jaworski, "Fluxon Dynamics in Exponentially Shaped Josephson Junction," Phy. rev. B, 71 (2005), 1-6. |
[27] |
M. Jaworski, Exponentially tapered Josephson junction: some analytic results, Theor and Math Phys, 144 (2005), 1176-1180. |
[28] |
J. McCall and Lindsa, Superconductor cables: Advanced capabilities for the smart grid, Utility Automation Engineering TD, 13 (2008), 54. |
[29] |
J. D. Murray, "Mathematical Biology. I. An Introduction," Springer-Verlag, N.Y, 2002. |
[30] |
S. Rionero, Asymptotic behaviour of solutions to a nonlinear third order P.D.E modeling physical phenomena, Boll Unione Mat Ital, 9 (2012), 451-468. |
[31] |
H. Rogalla and P. H. Kes, "100 Years of Superconductivity," CRC Press, (2012). |
[32] |
A.C. Scott, "The Nonlinear Universe: Chaos, Emergence, Life," Springer-Verlag, 2007. |
[33] |
A.C. Scott, "Neuroscience A mathematical Primer," Springer-Verlag, 2002. |
[1] |
G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205 |
[2] |
Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051 |
[3] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[4] |
Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275 |
[5] |
Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244 |
[6] |
Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183 |
[7] |
Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699 |
[8] |
Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 153-179. doi: 10.3934/eect.2020001 |
[9] |
Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177 |
[10] |
Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014 |
[11] |
Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851 |
[12] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[13] |
Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917 |
[14] |
Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015 |
[15] |
Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3789-3838. doi: 10.3934/dcds.2019154 |
[16] |
Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246 |
[17] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[18] |
Yang Cao, Qiuting Zhao. Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29 (6) : 3833-3851. doi: 10.3934/era.2021064 |
[19] |
V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191 |
[20] |
Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]