• Previous Article
    Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping
  • CPAA Home
  • This Issue
  • Next Article
    Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators
November  2014, 13(6): 2177-2210. doi: 10.3934/cpaa.2014.13.2177

Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials

1. 

Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Received  February 2013 Revised  January 2014 Published  July 2014

In this paper we prove local-in-time Strichartz estimates with loss of derivatives for Schrödinger equations with variable coefficients and potentials, under the conditions that the geodesic flow is nontrapping and potentials grow polynomially at infinity. This is a generalization to the case with variable coefficients and improvement of the result by Yajima-Zhang [40]. The proof is based on microlocal techniques including the semiclassical parametrix for a time scale depending on a spatial localization and the Littlewood-Paley type decomposition with respect to both of space and frequency.
Citation: Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177
References:
[1]

J. -M. Bouclet, Strichartz estimates on asymptotically hyperbolic manifolds, Anal. PDE., 4 (2011), 1-84. doi: 10.2140/apde.2011.4.1.

[2]

J. -M. Bouclet and N. Tzvetkov, Strichartz estimates for long range perturbations, Amer. J. Math., 129 (2007), 1565-1609. doi: 10.1353/ajm.2007.0039.

[3]

J. -M. Bouclet and N. Tzvetkov, On global Strichartz estimates for non trapping metrics, J. Funct. Analysis, 254 (2008), 1661-1682. doi: 10.1016/j.jfa.2007.11.018.

[4]

N. Burq, P. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., 126 (2004), 569-605.

[5]

N. Burq, C. Guillarmou and A. Hassell, Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics, Geom. Funct. Anal., 20 (2010), 627-656. doi: 10.1007/s00039-010-0076-5.

[6]

N. Burq, F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680. doi: 10.1512/iumj.2004.53.2541.

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant. Lect. Nates Math. vol. 10, AMS, Providence, RI, 2003.

[8]

P. D'Ancona and L. Fanelli, Smoothing estimates for the Schrödinger equation with unbounded potentials, J. Differential Equations, 246 (2009), 4552-4567. doi: 10.1016/j.jde.2009.03.026.

[9]

P. D'Ancona, L. Fanelli, L. Vega and N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Analysis, 258 (2010), 3227-3240. doi: 10.1016/j.jfa.2010.02.007.

[10]

S. Doi, Smoothness of solutions for Schrödinger equations with unbounded potentials, Publ. Res. Inst. Math. Sci., 41 (2005), 175-221.

[11]

D. Dunford and J. T. Schwartz, Linear operators. Part II. Spectral theory. Selfadjoint operators in Hilbert space. With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963.

[12]

L. Fanelli, V. Felli, M. Fontelos and M. A. Primo, Time decay of scaling critical electromagnetic Schrödinger flows, Commun. Math. Phs., 324 (2013), 1033-1067. doi: 10.1007/s00220-013-1830-y.

[13]

D. Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559-600.

[14]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. lHP-Analyse non linéaire., 2 (1985), 309-327.

[15]

A. Hassell, T. Tao and J. Wunsch, Sharp Strichartz estimates on nontrapping asymptotically conic manifolds, Amer. J. Math., 128 (2006), 963-1024.

[16]

B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, in Schrödinger Operators (eds. H. Holden and A. Jensen), Lecture Notes in Physics 345 (1989), 118-197. doi: 10.1007/3-540-51783-9_19.

[17]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer- Verlag, Berlin Heidelberg New York, 1985.

[18]

A. Iwatsuka, Essential self-adjointness of the Schrödinger operators with magnetic fields diverging at infinity, Publ. Res. Inst. Math. Sci., 26 (1990), 841-860. doi: 10.2977/prims/1195170737.

[19]

J.- L. Journé, A. Soffer, C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., \text{44} (1991), 573-604. doi: 10.1002/cpa.3160440504.

[20]

M. Keel and T. Tao, Endpoint Strichartz Estimates, Amer. J. Math., 120 (1998), 955-980.

[21]

A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-4495-8.

[22]

J. Marzuola, J. Metcalfe and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Analysis, 255 (2008), 1497-1553. doi: 10.1016/j.jfa.2008.05.022.

[23]

H. Mizutani, Strichartz estimates for Schrödinger equations on scattering manifolds, Comm. Partial Differential Equations, 37 (2012), 169-224. doi: 10.1080/03605302.2011.593017.

[24]

H. Mizutani, Strichartz estimates for Schrödinger equations with variable coefficients and potentials at most linear at spatial infinity, J. Math. Soc. Japan, 65 (2013), 687-721.

[25]

H. Mizutani, Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials, Anal. PDE, 6 (2013), 1857-1898 doi: 10.2140/apde.2013.6.1857.

[26]

L. Robbiano and C. Zuily, Strichartz estimates for Schrödinger equations with variable coefficients, Mém. SMF. Math. Fr. (N.S.), 101-102 (2005), vi+208 pp.

[27]

L. Robbiano and C. Zuily, Remark on the Kato smoothing effect for Schrödinger equation with superquadratic potentials, Comm. Partial Differential Equations, 33 (2008), 718-727. doi: 10.1080/03605300701517861.

[28]

D. Robert, Autour de lfapproximation semi-classique, Progr. Math. 68 Birkhäuser, Basel, 1987.

[29]

I. Rodnianski and W. Schlag, Time decay for solutions of Schroödinger equations with rough and time dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4.

[30]

W. Schlag, Dispersive estimates for Schrödinger operators: a survey, in Mathematical aspects of nonlinear dispersive equations (eds. B. J. et al.), Ann. of Math. Stud. 163, Princeton Univ. Press, (2007), 255-285.

[31]

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447-526. doi: 10.1090/S0273-0979-1982-15041-8.

[32]

C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511530029.

[33]

G. Staffilani and D. Tataru, Strichartz estimates for a Schrödinger operator with non smooth coefficients, Comm. Partial Differential Equations, 27 (2002), 1337-1372. doi: 10.1081/PDE-120005841.

[34]

E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159-172.

[35]

R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J, 44 (1977), 705-714.

[36]

D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math., 130 (2008), 571-634. doi: 10.1353/ajm.0.0000.

[37]

K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm Math. Phys., 110 (1987), 415-426.

[38]

K. Yajima, Schrödinger evolution equation with magnetic fields, J. d'Anal. Math., 56 (1991), 29-76. doi: 10.1007/BF02820459.

[39]

K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys., 259 (2005), 475-509. doi: 10.1007/s00220-005-1375-9.

[40]

K. Yajima and G. Zhang, Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity, Comm. Partial Differential Equations, 27 (2002), 1337-1372.

[41]

S. Zheng, Littlewood-Paley theorem for Schrödinger operators, Anal. Theory Appl., 22 (2006), 353-361. doi: 10.1007/s10496-006-0353-1.

show all references

References:
[1]

J. -M. Bouclet, Strichartz estimates on asymptotically hyperbolic manifolds, Anal. PDE., 4 (2011), 1-84. doi: 10.2140/apde.2011.4.1.

[2]

J. -M. Bouclet and N. Tzvetkov, Strichartz estimates for long range perturbations, Amer. J. Math., 129 (2007), 1565-1609. doi: 10.1353/ajm.2007.0039.

[3]

J. -M. Bouclet and N. Tzvetkov, On global Strichartz estimates for non trapping metrics, J. Funct. Analysis, 254 (2008), 1661-1682. doi: 10.1016/j.jfa.2007.11.018.

[4]

N. Burq, P. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., 126 (2004), 569-605.

[5]

N. Burq, C. Guillarmou and A. Hassell, Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics, Geom. Funct. Anal., 20 (2010), 627-656. doi: 10.1007/s00039-010-0076-5.

[6]

N. Burq, F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680. doi: 10.1512/iumj.2004.53.2541.

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant. Lect. Nates Math. vol. 10, AMS, Providence, RI, 2003.

[8]

P. D'Ancona and L. Fanelli, Smoothing estimates for the Schrödinger equation with unbounded potentials, J. Differential Equations, 246 (2009), 4552-4567. doi: 10.1016/j.jde.2009.03.026.

[9]

P. D'Ancona, L. Fanelli, L. Vega and N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Analysis, 258 (2010), 3227-3240. doi: 10.1016/j.jfa.2010.02.007.

[10]

S. Doi, Smoothness of solutions for Schrödinger equations with unbounded potentials, Publ. Res. Inst. Math. Sci., 41 (2005), 175-221.

[11]

D. Dunford and J. T. Schwartz, Linear operators. Part II. Spectral theory. Selfadjoint operators in Hilbert space. With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963.

[12]

L. Fanelli, V. Felli, M. Fontelos and M. A. Primo, Time decay of scaling critical electromagnetic Schrödinger flows, Commun. Math. Phs., 324 (2013), 1033-1067. doi: 10.1007/s00220-013-1830-y.

[13]

D. Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559-600.

[14]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. lHP-Analyse non linéaire., 2 (1985), 309-327.

[15]

A. Hassell, T. Tao and J. Wunsch, Sharp Strichartz estimates on nontrapping asymptotically conic manifolds, Amer. J. Math., 128 (2006), 963-1024.

[16]

B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, in Schrödinger Operators (eds. H. Holden and A. Jensen), Lecture Notes in Physics 345 (1989), 118-197. doi: 10.1007/3-540-51783-9_19.

[17]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer- Verlag, Berlin Heidelberg New York, 1985.

[18]

A. Iwatsuka, Essential self-adjointness of the Schrödinger operators with magnetic fields diverging at infinity, Publ. Res. Inst. Math. Sci., 26 (1990), 841-860. doi: 10.2977/prims/1195170737.

[19]

J.- L. Journé, A. Soffer, C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., \text{44} (1991), 573-604. doi: 10.1002/cpa.3160440504.

[20]

M. Keel and T. Tao, Endpoint Strichartz Estimates, Amer. J. Math., 120 (1998), 955-980.

[21]

A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-4495-8.

[22]

J. Marzuola, J. Metcalfe and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Analysis, 255 (2008), 1497-1553. doi: 10.1016/j.jfa.2008.05.022.

[23]

H. Mizutani, Strichartz estimates for Schrödinger equations on scattering manifolds, Comm. Partial Differential Equations, 37 (2012), 169-224. doi: 10.1080/03605302.2011.593017.

[24]

H. Mizutani, Strichartz estimates for Schrödinger equations with variable coefficients and potentials at most linear at spatial infinity, J. Math. Soc. Japan, 65 (2013), 687-721.

[25]

H. Mizutani, Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials, Anal. PDE, 6 (2013), 1857-1898 doi: 10.2140/apde.2013.6.1857.

[26]

L. Robbiano and C. Zuily, Strichartz estimates for Schrödinger equations with variable coefficients, Mém. SMF. Math. Fr. (N.S.), 101-102 (2005), vi+208 pp.

[27]

L. Robbiano and C. Zuily, Remark on the Kato smoothing effect for Schrödinger equation with superquadratic potentials, Comm. Partial Differential Equations, 33 (2008), 718-727. doi: 10.1080/03605300701517861.

[28]

D. Robert, Autour de lfapproximation semi-classique, Progr. Math. 68 Birkhäuser, Basel, 1987.

[29]

I. Rodnianski and W. Schlag, Time decay for solutions of Schroödinger equations with rough and time dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4.

[30]

W. Schlag, Dispersive estimates for Schrödinger operators: a survey, in Mathematical aspects of nonlinear dispersive equations (eds. B. J. et al.), Ann. of Math. Stud. 163, Princeton Univ. Press, (2007), 255-285.

[31]

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447-526. doi: 10.1090/S0273-0979-1982-15041-8.

[32]

C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511530029.

[33]

G. Staffilani and D. Tataru, Strichartz estimates for a Schrödinger operator with non smooth coefficients, Comm. Partial Differential Equations, 27 (2002), 1337-1372. doi: 10.1081/PDE-120005841.

[34]

E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159-172.

[35]

R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J, 44 (1977), 705-714.

[36]

D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math., 130 (2008), 571-634. doi: 10.1353/ajm.0.0000.

[37]

K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm Math. Phys., 110 (1987), 415-426.

[38]

K. Yajima, Schrödinger evolution equation with magnetic fields, J. d'Anal. Math., 56 (1991), 29-76. doi: 10.1007/BF02820459.

[39]

K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys., 259 (2005), 475-509. doi: 10.1007/s00220-005-1375-9.

[40]

K. Yajima and G. Zhang, Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity, Comm. Partial Differential Equations, 27 (2002), 1337-1372.

[41]

S. Zheng, Littlewood-Paley theorem for Schrödinger operators, Anal. Theory Appl., 22 (2006), 353-361. doi: 10.1007/s10496-006-0353-1.

[1]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[2]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[3]

Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli. Smoothing-Strichartz estimates for the Schrodinger equation with small magnetic potential. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 771-786. doi: 10.3934/dcds.2007.17.771

[4]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[5]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[6]

Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 597-608. doi: 10.3934/dcds.2020024

[7]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[8]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[9]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

[10]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[11]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[12]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[13]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic and Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[14]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[15]

Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128

[16]

Leijin Cao. Existence of stable standing waves for the nonlinear Schrödinger equation with the Hardy potential. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022125

[17]

Kazuhiro Ishige, Yujiro Tateishi. Decay estimates for Schrödinger heat semigroup with inverse square potential in Lorentz spaces II. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 369-401. doi: 10.3934/dcds.2021121

[18]

Seongyeon Kim, Yehyun Kwon, Ihyeok Seo. Strichartz estimates and local regularity for the elastic wave equation with singular potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1897-1911. doi: 10.3934/dcds.2020344

[19]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[20]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure and Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]