Advanced Search
Article Contents
Article Contents

Infinitely many sign-changing solutions for the Brézis-Nirenberg problem

Abstract Related Papers Cited by
  • In this paper, we present a new proof on the existence of infinitely many sign-changing solutions for the following Brézis-Nirenberg problem \begin{eqnarray} -\Delta u=\lambda u+|u|^{2^{*}-2}u \quad \textrm{in}\, \Omega, \qquad u=0 \quad \textrm{on}\,\partial\Omega, \end{eqnarray} for each fixed $\lambda>0$, under the assumptions that $N\geq 7$, where $\Omega$ is a bounded smooth domain of $\mathbb{R}^{N}$, $2^{*}=\frac{2N}{N-2}$ is the critical Sobolev exponent. In order to construct sign-changing solutions, we will use a combination of invariant sets method and Ljusternik-Schnirelman type minimax method, which is much simpler than the proof of [20] depending on the estimates of Morse indices of nodal solutions to obtain the same result.
    Mathematics Subject Classification: Primary: 35J60; Secondary: 47J30, 58E05.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Arioli, F. Gazzola, H. C. Grunau and E. Sassone, The second bifurcation branch for radial solutions of the Brézis-Nirenberg problem in dimension four}, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 69-90.doi: 10.1007/s00030-007-6034-8.


    F. V. Atkinson, H. Brézis and L. A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponents, J. Differential Equations, 85 (1990), 151-170.doi: 10.1016/0022-0396(90)90093-5.


    T. Bartsch, Z. L. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations, Commun. Partial Differential Equations, 29 (2004), 25-42.doi: 10.1081/PDE-120028842.


    T. Bartsch, Z. L. Liu and T. Weth, Nodal solutions of a $p$-Laplcain equation, Proc. London Math. Soc., 91 (2005), 129-152.doi: 10.1112/S0024611504015187.


    H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405.


    D. M. Cao and S. S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. Partial Differential Equations, 38 (2010), 471-501.doi: 10.1007/s00526-009-0295-5.


    D. M. Cao, S. J. Peng and S. S. Yan, Infinitely many solutions for $p$-Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902.doi: 10.1016/j.jfa.2012.01.006.


    A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéarier, 2 (1985), 463-470.


    G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéarier, 1 (1984), 341-350.


    G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69 (1986), 289-306.doi: 10.1016/0022-1236(86)90094-7.


    Z. J. Chen and W. M. Zou, On an elliptic problem with critical exponent and Hardy potential, J. Differential Equations, 252 (2012), 969-987.doi: 10.1016/j.jde.2011.09.042.


    M. Clapp and T. Weth, Multiple solutions for the Brézis-Nirenberg problem, Adv. Differ. Equ., 10 (2005), 463-480.


    G. Devillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differ. Equ., 7 (2002), 1257-1280.


    G. Devillanova and S. Solimini, A multiplicity result for elliptic equations at critical growth in low dimension, Comm. Contemp. Math., 5 (2003), 171-177.doi: 10.1142/S0219199703000938.


    D. Fortunato and E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987), 205-213.doi: 10.1017/S0308210500022046.


    S. J. Li and Z.-Q. Wang, Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc., 354 (2002), 3207-3227.doi: 10.1090/S0002-9947-02-03031-3.


    P. L. Lions, The concentration-compactness principle in the calculus of variations: the limit case, Rev. Mat. Iberoamericana, 1 (1985), 45-121, 145-201.doi: 10.4171/RMI/6.


    Z. L. Liu, F. A. van Heerden and Z.-Q. Wang, Nodal type bound states of Schrödinger equations via invariant set and minimax methods, J. Differential Equations, 214 (2005), 358-390.doi: 10.1016/j.jde.2004.08.023.


    P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986.


    M. Schechter and W. Zou, On the Brézis-Nirenberg problem, Arch. Rational Mech. Anal., 197 (2010), 337-356.doi: 10.1007/s00205-009-0288-8.


    S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sovolev space, Ann. Inst. H. Poincaré Anal. Non Linéarier, 12 (1995), 319-337.


    M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.doi: 10.1007/BF01174186.


    M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, $3^{rd}$ Edition, Springer-Verlag, Berlin, 2000.doi: 10.1007/978-3-662-04194-9.


    A. Szulkin, T. Weth and M. Willem, Ground state solutions for a semilinear problem with critical exponent, Differential Integral Equations, 22 (2009), 913-926.


    S. S. Yan, A global compactness result for quasilinear elliptic equations with critical Sobolev exponents, Chinese Ann. Math. Ser. A, 16 (1995), 227-234.

  • 加载中

Article Metrics

HTML views() PDF downloads(178) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint