\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Infinitely many sign-changing solutions for the Brézis-Nirenberg problem

Abstract Related Papers Cited by
  • In this paper, we present a new proof on the existence of infinitely many sign-changing solutions for the following Brézis-Nirenberg problem \begin{eqnarray} -\Delta u=\lambda u+|u|^{2^{*}-2}u \quad \textrm{in}\, \Omega, \qquad u=0 \quad \textrm{on}\,\partial\Omega, \end{eqnarray} for each fixed $\lambda>0$, under the assumptions that $N\geq 7$, where $\Omega$ is a bounded smooth domain of $\mathbb{R}^{N}$, $2^{*}=\frac{2N}{N-2}$ is the critical Sobolev exponent. In order to construct sign-changing solutions, we will use a combination of invariant sets method and Ljusternik-Schnirelman type minimax method, which is much simpler than the proof of [20] depending on the estimates of Morse indices of nodal solutions to obtain the same result.
    Mathematics Subject Classification: Primary: 35J60; Secondary: 47J30, 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Arioli, F. Gazzola, H. C. Grunau and E. Sassone, The second bifurcation branch for radial solutions of the Brézis-Nirenberg problem in dimension four}, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 69-90.doi: 10.1007/s00030-007-6034-8.

    [2]

    F. V. Atkinson, H. Brézis and L. A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponents, J. Differential Equations, 85 (1990), 151-170.doi: 10.1016/0022-0396(90)90093-5.

    [3]

    T. Bartsch, Z. L. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations, Commun. Partial Differential Equations, 29 (2004), 25-42.doi: 10.1081/PDE-120028842.

    [4]

    T. Bartsch, Z. L. Liu and T. Weth, Nodal solutions of a $p$-Laplcain equation, Proc. London Math. Soc., 91 (2005), 129-152.doi: 10.1112/S0024611504015187.

    [5]

    H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405.

    [6]

    D. M. Cao and S. S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. Partial Differential Equations, 38 (2010), 471-501.doi: 10.1007/s00526-009-0295-5.

    [7]

    D. M. Cao, S. J. Peng and S. S. Yan, Infinitely many solutions for $p$-Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902.doi: 10.1016/j.jfa.2012.01.006.

    [8]

    A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéarier, 2 (1985), 463-470.

    [9]

    G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéarier, 1 (1984), 341-350.

    [10]

    G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69 (1986), 289-306.doi: 10.1016/0022-1236(86)90094-7.

    [11]

    Z. J. Chen and W. M. Zou, On an elliptic problem with critical exponent and Hardy potential, J. Differential Equations, 252 (2012), 969-987.doi: 10.1016/j.jde.2011.09.042.

    [12]

    M. Clapp and T. Weth, Multiple solutions for the Brézis-Nirenberg problem, Adv. Differ. Equ., 10 (2005), 463-480.

    [13]

    G. Devillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differ. Equ., 7 (2002), 1257-1280.

    [14]

    G. Devillanova and S. Solimini, A multiplicity result for elliptic equations at critical growth in low dimension, Comm. Contemp. Math., 5 (2003), 171-177.doi: 10.1142/S0219199703000938.

    [15]

    D. Fortunato and E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987), 205-213.doi: 10.1017/S0308210500022046.

    [16]

    S. J. Li and Z.-Q. Wang, Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc., 354 (2002), 3207-3227.doi: 10.1090/S0002-9947-02-03031-3.

    [17]

    P. L. Lions, The concentration-compactness principle in the calculus of variations: the limit case, Rev. Mat. Iberoamericana, 1 (1985), 45-121, 145-201.doi: 10.4171/RMI/6.

    [18]

    Z. L. Liu, F. A. van Heerden and Z.-Q. Wang, Nodal type bound states of Schrödinger equations via invariant set and minimax methods, J. Differential Equations, 214 (2005), 358-390.doi: 10.1016/j.jde.2004.08.023.

    [19]

    P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986.

    [20]

    M. Schechter and W. Zou, On the Brézis-Nirenberg problem, Arch. Rational Mech. Anal., 197 (2010), 337-356.doi: 10.1007/s00205-009-0288-8.

    [21]

    S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sovolev space, Ann. Inst. H. Poincaré Anal. Non Linéarier, 12 (1995), 319-337.

    [22]

    M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.doi: 10.1007/BF01174186.

    [23]

    M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, $3^{rd}$ Edition, Springer-Verlag, Berlin, 2000.doi: 10.1007/978-3-662-04194-9.

    [24]

    A. Szulkin, T. Weth and M. Willem, Ground state solutions for a semilinear problem with critical exponent, Differential Integral Equations, 22 (2009), 913-926.

    [25]

    S. S. Yan, A global compactness result for quasilinear elliptic equations with critical Sobolev exponents, Chinese Ann. Math. Ser. A, 16 (1995), 227-234.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(178) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return