November  2014, 13(6): 2351-2358. doi: 10.3934/cpaa.2014.13.2351

Finite speed of propagation for mixed problems in the $WR$ class

1. 

Université de Nantes, Laboratoire de Mathématiques Jean Leray (CNRS UMR6629), 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

Received  October 2013 Revised  March 2014 Published  July 2014

In this article we are interested in the propagation speed for solutions of hyperbolic boundary value problems in the $WR$ class. Using the Holmgren principle, we show that this speed is finite and we are able to give an explicit expression for the maximal speed. Due to a propagation phenomenon along the boundary that is specific to the $WR$ class, the maximal speed can be larger than the propagation speed for the Cauchy problem. This is consistent with previous examples of the litterature.
Citation: Antoine Benoit. Finite speed of propagation for mixed problems in the $WR$ class. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2351-2358. doi: 10.3934/cpaa.2014.13.2351
References:
[1]

S. Benzoni-Gavage, F. Rousset, D. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A, 5 (2002), 1073-1104. doi: 10.1017/S030821050000202X.

[2]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations, Oxford Mathematical Monographs, Oxford University Press, 2007.

[3]

A. Chazarain and J. Piriou, Caractérisation des problèmes mixtes hyperboliques bien posés differentiables, (French) [Characterization of well-posed mixed hyperbolic mixed problems.], Ann. Inst. Fourier (Grenoble), 22 (1972), 193-237.

[4]

A. Chazarain and J. Piriou, Introduction à la théorie des équations aux dérivées partielles linéaires,, (French) [Introduction to the theory of linear partial differential equations.], (). 

[5]

J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl., 84 (2005), 786-818. doi: 10.1016/j.matpur.2004.10.005.

[6]

J.-F. Coulombel and O. Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems, Ann. Inst. Fourier (Grenoble), 60 (2010), 2183-2233.

[7]

M. Ikawa, Mixed problem for the wave equation with an oblique derivative boundary condition, Osaka J. Math., 7 (1970), 495-525.

[8]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., 23 (1970), 277-298.

[9]

G. Métivier, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc., 32 (2000), 689-702. doi: 10.1112/S0024609300007517.

[10]

A. Morando and P. Secchi, Regularity of weakly well posed hyperbolic mixed problems with characteristic boundary, J. Hyperbolic Differ. Equ., 8 (2011), 37-99. doi: 10.1142/S021989161100238X.

[11]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, American Mathematical Society, Providence, RI, 2012.

[12]

M. Sablé-Tougeron, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension $2$, (French) [Existence for a non-linear elastodynamic Neumann problem in $2$ dimensions], Arch. Rational Mech. Anal., 101 (1988), 261-292. doi: 10.1007/BF00253123.

[13]

T. Shirota, On the propagation speed of hyperbolic operator with mixed boundary conditions, J. Fac. Sci. Hokkaido Univ. Ser. I, 22 (1972), 25-31.

show all references

References:
[1]

S. Benzoni-Gavage, F. Rousset, D. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A, 5 (2002), 1073-1104. doi: 10.1017/S030821050000202X.

[2]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations, Oxford Mathematical Monographs, Oxford University Press, 2007.

[3]

A. Chazarain and J. Piriou, Caractérisation des problèmes mixtes hyperboliques bien posés differentiables, (French) [Characterization of well-posed mixed hyperbolic mixed problems.], Ann. Inst. Fourier (Grenoble), 22 (1972), 193-237.

[4]

A. Chazarain and J. Piriou, Introduction à la théorie des équations aux dérivées partielles linéaires,, (French) [Introduction to the theory of linear partial differential equations.], (). 

[5]

J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl., 84 (2005), 786-818. doi: 10.1016/j.matpur.2004.10.005.

[6]

J.-F. Coulombel and O. Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems, Ann. Inst. Fourier (Grenoble), 60 (2010), 2183-2233.

[7]

M. Ikawa, Mixed problem for the wave equation with an oblique derivative boundary condition, Osaka J. Math., 7 (1970), 495-525.

[8]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., 23 (1970), 277-298.

[9]

G. Métivier, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc., 32 (2000), 689-702. doi: 10.1112/S0024609300007517.

[10]

A. Morando and P. Secchi, Regularity of weakly well posed hyperbolic mixed problems with characteristic boundary, J. Hyperbolic Differ. Equ., 8 (2011), 37-99. doi: 10.1142/S021989161100238X.

[11]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, American Mathematical Society, Providence, RI, 2012.

[12]

M. Sablé-Tougeron, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension $2$, (French) [Existence for a non-linear elastodynamic Neumann problem in $2$ dimensions], Arch. Rational Mech. Anal., 101 (1988), 261-292. doi: 10.1007/BF00253123.

[13]

T. Shirota, On the propagation speed of hyperbolic operator with mixed boundary conditions, J. Fac. Sci. Hokkaido Univ. Ser. I, 22 (1972), 25-31.

[1]

Davide Guidetti. On hyperbolic mixed problems with dynamic and Wentzell boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3461-3471. doi: 10.3934/dcdss.2020239

[2]

M.J. Lopez-Herrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 1015-1024. doi: 10.3934/proc.2011.2011.1015

[3]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[4]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[5]

Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051

[6]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial and Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[7]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29 (3) : 2517-2532. doi: 10.3934/era.2020127

[8]

Thi-Thao-Phuong Hoang. Optimized Ventcel-Schwarz waveform relaxation and mixed hybrid finite element method for transport problems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022060

[9]

Antonella Marini, Thomas H. Otway. Strong solutions to a class of boundary value problems on a mixed Riemannian--Lorentzian metric. Conference Publications, 2015, 2015 (special) : 801-808. doi: 10.3934/proc.2015.0801

[10]

Rafael Monteiro. Horizontal patterns from finite speed directional quenching. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3503-3534. doi: 10.3934/dcdsb.2018285

[11]

Thomas Gauthier, Gabriel Vigny. Distribution of postcritically finite polynomials Ⅱ: Speed of convergence. Journal of Modern Dynamics, 2017, 11: 57-98. doi: 10.3934/jmd.2017004

[12]

Monica Marras, Stella Vernier-Piro. A note on a class of 4th order hyperbolic problems with weak and strong damping and superlinear source term. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2047-2055. doi: 10.3934/dcdss.2020157

[13]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[14]

Huashui Zhan. On a hyperbolic-parabolic mixed type equation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 605-624. doi: 10.3934/dcdss.2017030

[15]

Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control and Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761

[16]

S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305

[17]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[18]

Chuanqiang Chen, Li Chen, Xinqun Mei, Ni Xiang. The Neumann problem for a class of mixed complex Hessian equations. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022049

[19]

Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085

[20]

Akisato Kubo. Asymptotic behavior of solutions of the mixed problem for semilinear hyperbolic equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 59-74. doi: 10.3934/cpaa.2004.3.59

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]