-
Previous Article
On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping
- CPAA Home
- This Issue
-
Next Article
Finite speed of propagation for mixed problems in the $WR$ class
Concentration phenomenon for fractional nonlinear Schrödinger equations
1. | School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018, Zhejiang, China |
2. | School of Science, Tianjin University, Tianjin 300072, China |
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York-London, 1975, Pure and Applied Mathematics, Vol. 65. |
[2] |
G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line-tension effect, Arch. Rational Mech. Anal., 144 (1998), 1-46.
doi: 10.1007/s002050050111. |
[3] |
A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159 (2001), 253-271,
doi: 10.1007/s002050100152. |
[4] |
A. Ambrosetti, A. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I, Comm. Math. Phys., 235 (2003), 427-466.
doi: 10.1007/s00220-003-0811-y. |
[5] |
C. J. Amick and J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation--a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107-126.
doi: 10.1007/BF02392447. |
[6] |
A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in $R^N$, Rev. Mat. Iberoamericana, 6 (1990), 1-15.
doi: 10.4171/RMI/92. |
[7] |
A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365-413.
doi: 10.1016/S0294-1449(97)80142-4. |
[8] |
P. W. Bates, On some nonlocal evolution equations arising in materials science, in Nonlinear dynamics and evolution equations, vol. 48 of Fields Inst. Commun. Amer. Math. Soc., Providence, RI, 2006, 13-52. |
[9] |
P. Biler, G. Karch and W. A. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 613-637.
doi: 10.1016/S0294-1449(01)00080-4. |
[10] |
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316.
doi: 10.1007/s00205-002-0225-6. |
[11] |
X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.
doi: 10.1002/cpa.20093. |
[12] |
L. Caffarelli, A. Mellet and Y. Sire, Traveling waves for a boundary reaction-diffusion equation, Adv. Math., 230 (2012), 433-457,
doi: 10.1016/j.aim.2012.01.020. |
[13] |
L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.
doi: 10.1002/cpa.20331. |
[14] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[15] |
L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41 (2011), 203-240.
doi: 10.1007/s00526-010-0359-6. |
[16] |
K.-C. Chang, Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[17] |
S.-Y. A. Chang and M. d. M. González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.
doi: 10.1016/j.aim.2010.07.016. |
[18] |
G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations,, \arxiv{1305.4426}., ().
|
[19] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 2nd edition, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03537-5. |
[20] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[21] |
D. Cordoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. of Math., 148 (1998), 1135-1152.
doi: 10.2307/121037. |
[22] |
W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, 5 (1992), 497-522. |
[23] |
J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.
doi: 10.1016/j.jde.2013.10.006. |
[24] |
R. de la Llave and E. Valdinoci, Symmetry for a Dirichlet-Neumann problem arising in water waves, Math. Res. Lett., 16 (2009), 909-918.
doi: 10.4310/MRL.2009.v16.n5.a13. |
[25] |
M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains}, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[26] |
M. del Pino, M. Kowalczyk and J.-C. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146.
doi: 10.1002/cpa.20135. |
[27] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[28] |
J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. |
[29] |
G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976, Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219. |
[30] |
A. Farina and E. Valdinoci, Rigidity results for elliptic PDEs with uniform limits: an abstract framework with applications, Indiana Univ. Math. J., 60 (2011), 121-141.
doi: 10.1512/iumj.2011.60.4433. |
[31] |
C. Fefferman and R. de la Llave, Relativistic stability of matter. I, Rev. Mat. Iberoamericana, 2 (1986), 119-213.
doi: 10.4171/RMI/30. |
[32] |
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition, Dover Publications Inc., Mineola, NY, 2010, Emended and with a preface by Daniel F. Styer. |
[33] |
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[34] |
R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian,, \arxiv{1302.2652}., ().
|
[35] |
R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\BbbR$, Acta Math., 210 (2013), 261-318.
doi: 10.1007/s11511-013-0095-9. |
[36] |
G. K. Gächter and M. J. Grote, Dirichlet-to-Neumann map for three-dimensional elastic waves, Wave Motion, 37 (2003), 293-311.
doi: 10.1016/S0165-2125(02)00091-4. |
[37] |
A. Garroni and G. Palatucci, A singular perturbation result with a fractional norm, in Variational problems in materials science, vol. 68 of Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 2006, 111-126.
doi: 10.1007/3-7643-7565-5_8. |
[38] |
M. d. M. González and R. Monneau, Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32 (2012), 1255-1286. |
[39] |
M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 261-280.
doi: 10.1016/S0294-1449(01)00089-0. |
[40] |
M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.
doi: 10.1016/j.jcp.2004.06.012. |
[41] |
M. J. W. Hall and M. Reginatto, Schrödinger equation from an exact uncertainty principle, J. Phys. A, 35 (2002), 3289-3303.
doi: 10.1088/0305-4470/35/14/310. |
[42] |
B. Hu and D. P. Nicholls, Analyticity of Dirichlet-Neumann operators on Hölder and Lipschitz domains, SIAM J. Math. Anal., 37 (2005), 302-320 (electronic).
doi: 10.1137/S0036141004444810. |
[43] |
C. E. Kenig, Y. Martel and L. Robbiano, Local well-posedness and blow-up in the energy space for a class of $L^2$ critical dispersion generalized Benjamin-Ono equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 853-887.
doi: 10.1016/j.anihpc.2011.06.005. |
[44] |
M. Kurzke, A nonlocal singular perturbation problem with periodic well potential, ESAIM Control Optim. Calc. Var., 12 (2006), 52-63 (electronic).
doi: 10.1051/cocv:2005037. |
[45] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502. |
[46] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108.
doi: 10.1103/PhysRevE.66.056108. |
[47] |
Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations, 2 (1997), 955-980. |
[48] |
A. J. Majda and E. G. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Phys. D, 98 (1996), 515-522. Nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995).
doi: 10.1016/0167-2789(96)00114-5. |
[49] |
B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, Calif., 1982, Schriftenreihe für den Referenten. |
[50] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 77.
doi: 10.1016/S0370-1573(00)00070-3. |
[51] |
E. Milakis and L. Silvestre, Regularity for the nonlinear Signorini problem, Adv. Math., 217 (2008), 1301-1312.
doi: 10.1016/j.aim.2007.08.009. |
[52] |
E. Nelson, Quantum Fluctuations, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1985. |
[53] |
D. P. Nicholls and M. Taber, Joint analyticity and analytic continuation of Dirichlet-Neumann operators on doubly perturbed domains, J. Math. Fluid Mech., 10 (2008), 238-271.
doi: 10.1007/s00021-006-0231-9. |
[54] |
O. Savin and E. Valdinoci, Elliptic PDEs with fibered nonlinearities, J. Geom. Anal., 19 (2009), 420-432.
doi: 10.1007/s12220-008-9064-5. |
[55] |
S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\Bbb R^N$, J. Math. Phys., 54 (2013), 031501, 17.
doi: 10.1063/1.4793990. |
[56] |
M. A. Shubin, Pseudodifferential Operators and Spectral Theory, 2nd edition, Springer-Verlag, Berlin, 2001. Translated from the 1978 Russian original by Stig I. Andersson.
doi: 10.1007/978-3-642-56579-3. |
[57] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[58] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[59] |
J. J. Stoker, Water waves: The Mathematical Theory with Applications, Pure and Applied Mathematics, Vol. IV, Interscience Publishers, Inc., New York, 1957. |
[60] |
J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145 (1997), 136-150.
doi: 10.1006/jfan.1996.3016. |
[61] |
M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Equations, 12 (1987), 1133-1173.
doi: 10.1080/03605308708820522. |
[62] |
G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience [John Wiley & Sons], New York, 1974, Pure and Applied Mathematics. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York-London, 1975, Pure and Applied Mathematics, Vol. 65. |
[2] |
G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line-tension effect, Arch. Rational Mech. Anal., 144 (1998), 1-46.
doi: 10.1007/s002050050111. |
[3] |
A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159 (2001), 253-271,
doi: 10.1007/s002050100152. |
[4] |
A. Ambrosetti, A. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I, Comm. Math. Phys., 235 (2003), 427-466.
doi: 10.1007/s00220-003-0811-y. |
[5] |
C. J. Amick and J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation--a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107-126.
doi: 10.1007/BF02392447. |
[6] |
A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in $R^N$, Rev. Mat. Iberoamericana, 6 (1990), 1-15.
doi: 10.4171/RMI/92. |
[7] |
A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365-413.
doi: 10.1016/S0294-1449(97)80142-4. |
[8] |
P. W. Bates, On some nonlocal evolution equations arising in materials science, in Nonlinear dynamics and evolution equations, vol. 48 of Fields Inst. Commun. Amer. Math. Soc., Providence, RI, 2006, 13-52. |
[9] |
P. Biler, G. Karch and W. A. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 613-637.
doi: 10.1016/S0294-1449(01)00080-4. |
[10] |
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316.
doi: 10.1007/s00205-002-0225-6. |
[11] |
X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.
doi: 10.1002/cpa.20093. |
[12] |
L. Caffarelli, A. Mellet and Y. Sire, Traveling waves for a boundary reaction-diffusion equation, Adv. Math., 230 (2012), 433-457,
doi: 10.1016/j.aim.2012.01.020. |
[13] |
L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.
doi: 10.1002/cpa.20331. |
[14] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[15] |
L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41 (2011), 203-240.
doi: 10.1007/s00526-010-0359-6. |
[16] |
K.-C. Chang, Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[17] |
S.-Y. A. Chang and M. d. M. González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.
doi: 10.1016/j.aim.2010.07.016. |
[18] |
G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations,, \arxiv{1305.4426}., ().
|
[19] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 2nd edition, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03537-5. |
[20] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[21] |
D. Cordoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. of Math., 148 (1998), 1135-1152.
doi: 10.2307/121037. |
[22] |
W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, 5 (1992), 497-522. |
[23] |
J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.
doi: 10.1016/j.jde.2013.10.006. |
[24] |
R. de la Llave and E. Valdinoci, Symmetry for a Dirichlet-Neumann problem arising in water waves, Math. Res. Lett., 16 (2009), 909-918.
doi: 10.4310/MRL.2009.v16.n5.a13. |
[25] |
M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains}, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[26] |
M. del Pino, M. Kowalczyk and J.-C. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146.
doi: 10.1002/cpa.20135. |
[27] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[28] |
J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. |
[29] |
G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976, Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219. |
[30] |
A. Farina and E. Valdinoci, Rigidity results for elliptic PDEs with uniform limits: an abstract framework with applications, Indiana Univ. Math. J., 60 (2011), 121-141.
doi: 10.1512/iumj.2011.60.4433. |
[31] |
C. Fefferman and R. de la Llave, Relativistic stability of matter. I, Rev. Mat. Iberoamericana, 2 (1986), 119-213.
doi: 10.4171/RMI/30. |
[32] |
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition, Dover Publications Inc., Mineola, NY, 2010, Emended and with a preface by Daniel F. Styer. |
[33] |
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[34] |
R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian,, \arxiv{1302.2652}., ().
|
[35] |
R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\BbbR$, Acta Math., 210 (2013), 261-318.
doi: 10.1007/s11511-013-0095-9. |
[36] |
G. K. Gächter and M. J. Grote, Dirichlet-to-Neumann map for three-dimensional elastic waves, Wave Motion, 37 (2003), 293-311.
doi: 10.1016/S0165-2125(02)00091-4. |
[37] |
A. Garroni and G. Palatucci, A singular perturbation result with a fractional norm, in Variational problems in materials science, vol. 68 of Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 2006, 111-126.
doi: 10.1007/3-7643-7565-5_8. |
[38] |
M. d. M. González and R. Monneau, Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32 (2012), 1255-1286. |
[39] |
M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 261-280.
doi: 10.1016/S0294-1449(01)00089-0. |
[40] |
M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.
doi: 10.1016/j.jcp.2004.06.012. |
[41] |
M. J. W. Hall and M. Reginatto, Schrödinger equation from an exact uncertainty principle, J. Phys. A, 35 (2002), 3289-3303.
doi: 10.1088/0305-4470/35/14/310. |
[42] |
B. Hu and D. P. Nicholls, Analyticity of Dirichlet-Neumann operators on Hölder and Lipschitz domains, SIAM J. Math. Anal., 37 (2005), 302-320 (electronic).
doi: 10.1137/S0036141004444810. |
[43] |
C. E. Kenig, Y. Martel and L. Robbiano, Local well-posedness and blow-up in the energy space for a class of $L^2$ critical dispersion generalized Benjamin-Ono equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 853-887.
doi: 10.1016/j.anihpc.2011.06.005. |
[44] |
M. Kurzke, A nonlocal singular perturbation problem with periodic well potential, ESAIM Control Optim. Calc. Var., 12 (2006), 52-63 (electronic).
doi: 10.1051/cocv:2005037. |
[45] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502. |
[46] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108.
doi: 10.1103/PhysRevE.66.056108. |
[47] |
Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations, 2 (1997), 955-980. |
[48] |
A. J. Majda and E. G. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Phys. D, 98 (1996), 515-522. Nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995).
doi: 10.1016/0167-2789(96)00114-5. |
[49] |
B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, Calif., 1982, Schriftenreihe für den Referenten. |
[50] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 77.
doi: 10.1016/S0370-1573(00)00070-3. |
[51] |
E. Milakis and L. Silvestre, Regularity for the nonlinear Signorini problem, Adv. Math., 217 (2008), 1301-1312.
doi: 10.1016/j.aim.2007.08.009. |
[52] |
E. Nelson, Quantum Fluctuations, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1985. |
[53] |
D. P. Nicholls and M. Taber, Joint analyticity and analytic continuation of Dirichlet-Neumann operators on doubly perturbed domains, J. Math. Fluid Mech., 10 (2008), 238-271.
doi: 10.1007/s00021-006-0231-9. |
[54] |
O. Savin and E. Valdinoci, Elliptic PDEs with fibered nonlinearities, J. Geom. Anal., 19 (2009), 420-432.
doi: 10.1007/s12220-008-9064-5. |
[55] |
S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\Bbb R^N$, J. Math. Phys., 54 (2013), 031501, 17.
doi: 10.1063/1.4793990. |
[56] |
M. A. Shubin, Pseudodifferential Operators and Spectral Theory, 2nd edition, Springer-Verlag, Berlin, 2001. Translated from the 1978 Russian original by Stig I. Andersson.
doi: 10.1007/978-3-642-56579-3. |
[57] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[58] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[59] |
J. J. Stoker, Water waves: The Mathematical Theory with Applications, Pure and Applied Mathematics, Vol. IV, Interscience Publishers, Inc., New York, 1957. |
[60] |
J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145 (1997), 136-150.
doi: 10.1006/jfan.1996.3016. |
[61] |
M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Equations, 12 (1987), 1133-1173.
doi: 10.1080/03605308708820522. |
[62] |
G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience [John Wiley & Sons], New York, 1974, Pure and Applied Mathematics. |
[1] |
Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201 |
[2] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
[3] |
Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739 |
[4] |
Vincenzo Ambrosio. The nonlinear fractional relativistic Schrödinger equation: Existence, multiplicity, decay and concentration results. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5659-5705. doi: 10.3934/dcds.2021092 |
[5] |
César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535 |
[6] |
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 |
[7] |
Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128 |
[8] |
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 |
[9] |
Vincenzo Ambrosio. Concentration phenomena for critical fractional Schrödinger systems. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2085-2123. doi: 10.3934/cpaa.2018099 |
[10] |
Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254 |
[11] |
Weiming Liu, Lu Gan. Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2016, 15 (2) : 413-428. doi: 10.3934/cpaa.2016.15.413 |
[12] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[13] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[14] |
Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168 |
[15] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[16] |
Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237 |
[17] |
Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395 |
[18] |
Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188 |
[19] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021 |
[20] |
Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]