Citation: |
[1] |
K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352.doi: 10.1007/s002850050194. |
[2] |
T. Faria, Asymptotic stability for delayed logistic type equations, Math. Comput. Modelling, 43 (2006), 433-445.doi: 10.1016/j.mcm.2005.11.006. |
[3] |
D. Liang, J. W.-H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded domains and their numerical computations, Differ. Equ. Dyn. Syst., 11 (2003), 117-139. |
[4] |
E. Liz, Four theorems and one conjecture on the global asymptotic stability of delay differential equations, in The first 60 year of nolinear analysis of Jean Mawhin, (2004), 117-129.doi: 10.1142/9789812702906_0010. |
[5] |
E. Liz and G. Rost, On the global attractor of delay differential equations with unimodal feedback, Discrete Contin. Dyn. Syst., 24 (2009), 1215-1224.doi: 10.3934/dcds.2009.24.1215. |
[6] |
E. Liz, V. Tkachenko and S. Trofimchuk, A global stability criterion for scalar functional differential equations, SIAM J. Math. Anal., 35 (2003), 596-622.doi: 10.1137/S0036141001399222. |
[7] |
J. Metz and O. Diekmann, Dynamics of Physiologically Structured Populations, Springer-Verlag, New York, 1986.doi: 10.1007/978-3-662-13159-6. |
[8] |
H. Smith, A structured population model and a related functional-differential equation: global attractors and uniform persistence, J. Dyn. Diff. Eqns., 6 (1994), 71-99.doi: 10.1007/BF02219189. |
[9] |
H. Smith and H. Thieme, Monotone semiflows in scalar non-quasi-monotone functional differential equations, J. Math. Anal. Appl., 21 (1990), 673-692.doi: 10.1137/0521036. |
[10] |
J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains, R. Soc. Lond. A, 457 (2001), 1841-1853.doi: 10.1098/rspa.2001.0789. |
[11] |
J. W.-H. So, J. Wu and X. Zou, Structured population on two patches: Modeling dispersal and delay, J. Math. Biology, 43 (2001), 37-51.doi: 10.1007/s002850100081. |
[12] |
H. O. Walther, The 2-dimensional attractor of $x'(t)=-\mu x(t)+f(x(t-1))$, Mem. Amer. Math. Soc., 113 (1995), 544. |
[13] |
J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Diff. Eqns., 13 (2001), 651-687.doi: 10.1023/A:1016690424892. |
[14] |
D. Xu and X. Zhao, A nonlocal reaction-diffusion population model with stage structure, Can. Appl. Math. Q., 11 (2003), 303-320. |
[15] |
T. Yi, Y. Chen and J. Wu, Global dynamics of delayed reaction-diffusion equations in unbounded domains, Z. Angew. Math. Phys., 63 (2012), 793-812.doi: 10.1007/s00033-012-0224-x. |
[16] |
T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: a non-monotone case, J. Differ. Equ., 245 (2008), 3376-3388.doi: 10.1016/j.jde.2008.03.007. |
[17] |
T. Yi and X. Zou, Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain, J. Differ. Equ., 251 (2011), 2598-2611.doi: 10.1016/j.jde.2011.04.027. |
[18] |
T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466 (2010), 2955-2973.doi: 10.1098/rspa.2009.0650. |