November  2014, 13(6): 2475-2492. doi: 10.3934/cpaa.2014.13.2475

Global dynamics of a non-local delayed differential equation in the half plane

1. 

School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China

Received  January 2014 Revised  May 2014 Published  July 2014

In this paper, we first derive an equation for a single species population with two age stages and a fixed maturation period living in the half plane such as ocean and big lakes. By adopting the compact open topology, we establish some a priori estimate for nontrivial solutions after describing asymptotic properties of the nonlocal delayed effect, which enables us to show the permanence of the equation. Then we can employ standard dynamical system theoretical arguments to establish the global dynamics of the equation under appropriate conditions. Applying the main results to the model with Ricker's birth function and Mackey-Glass's hematopoiesis function, we obtain threshold results for the global dynamics of these two models.
Citation: Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475
References:
[1]

K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352. doi: 10.1007/s002850050194.

[2]

T. Faria, Asymptotic stability for delayed logistic type equations, Math. Comput. Modelling, 43 (2006), 433-445. doi: 10.1016/j.mcm.2005.11.006.

[3]

D. Liang, J. W.-H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded domains and their numerical computations, Differ. Equ. Dyn. Syst., 11 (2003), 117-139.

[4]

E. Liz, Four theorems and one conjecture on the global asymptotic stability of delay differential equations, in The first 60 year of nolinear analysis of Jean Mawhin, (2004), 117-129. doi: 10.1142/9789812702906_0010.

[5]

E. Liz and G. Rost, On the global attractor of delay differential equations with unimodal feedback, Discrete Contin. Dyn. Syst., 24 (2009), 1215-1224. doi: 10.3934/dcds.2009.24.1215.

[6]

E. Liz, V. Tkachenko and S. Trofimchuk, A global stability criterion for scalar functional differential equations, SIAM J. Math. Anal., 35 (2003), 596-622. doi: 10.1137/S0036141001399222.

[7]

J. Metz and O. Diekmann, Dynamics of Physiologically Structured Populations, Springer-Verlag, New York, 1986. doi: 10.1007/978-3-662-13159-6.

[8]

H. Smith, A structured population model and a related functional-differential equation: global attractors and uniform persistence, J. Dyn. Diff. Eqns., 6 (1994), 71-99. doi: 10.1007/BF02219189.

[9]

H. Smith and H. Thieme, Monotone semiflows in scalar non-quasi-monotone functional differential equations, J. Math. Anal. Appl., 21 (1990), 673-692. doi: 10.1137/0521036.

[10]

J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains, R. Soc. Lond. A, 457 (2001), 1841-1853. doi: 10.1098/rspa.2001.0789.

[11]

J. W.-H. So, J. Wu and X. Zou, Structured population on two patches: Modeling dispersal and delay, J. Math. Biology, 43 (2001), 37-51. doi: 10.1007/s002850100081.

[12]

H. O. Walther, The 2-dimensional attractor of $x'(t)=-\mu x(t)+f(x(t-1))$, Mem. Amer. Math. Soc., 113 (1995), 544.

[13]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Diff. Eqns., 13 (2001), 651-687. doi: 10.1023/A:1016690424892.

[14]

D. Xu and X. Zhao, A nonlocal reaction-diffusion population model with stage structure, Can. Appl. Math. Q., 11 (2003), 303-320.

[15]

T. Yi, Y. Chen and J. Wu, Global dynamics of delayed reaction-diffusion equations in unbounded domains, Z. Angew. Math. Phys., 63 (2012), 793-812. doi: 10.1007/s00033-012-0224-x.

[16]

T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: a non-monotone case, J. Differ. Equ., 245 (2008), 3376-3388. doi: 10.1016/j.jde.2008.03.007.

[17]

T. Yi and X. Zou, Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain, J. Differ. Equ., 251 (2011), 2598-2611. doi: 10.1016/j.jde.2011.04.027.

[18]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466 (2010), 2955-2973. doi: 10.1098/rspa.2009.0650.

show all references

References:
[1]

K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352. doi: 10.1007/s002850050194.

[2]

T. Faria, Asymptotic stability for delayed logistic type equations, Math. Comput. Modelling, 43 (2006), 433-445. doi: 10.1016/j.mcm.2005.11.006.

[3]

D. Liang, J. W.-H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded domains and their numerical computations, Differ. Equ. Dyn. Syst., 11 (2003), 117-139.

[4]

E. Liz, Four theorems and one conjecture on the global asymptotic stability of delay differential equations, in The first 60 year of nolinear analysis of Jean Mawhin, (2004), 117-129. doi: 10.1142/9789812702906_0010.

[5]

E. Liz and G. Rost, On the global attractor of delay differential equations with unimodal feedback, Discrete Contin. Dyn. Syst., 24 (2009), 1215-1224. doi: 10.3934/dcds.2009.24.1215.

[6]

E. Liz, V. Tkachenko and S. Trofimchuk, A global stability criterion for scalar functional differential equations, SIAM J. Math. Anal., 35 (2003), 596-622. doi: 10.1137/S0036141001399222.

[7]

J. Metz and O. Diekmann, Dynamics of Physiologically Structured Populations, Springer-Verlag, New York, 1986. doi: 10.1007/978-3-662-13159-6.

[8]

H. Smith, A structured population model and a related functional-differential equation: global attractors and uniform persistence, J. Dyn. Diff. Eqns., 6 (1994), 71-99. doi: 10.1007/BF02219189.

[9]

H. Smith and H. Thieme, Monotone semiflows in scalar non-quasi-monotone functional differential equations, J. Math. Anal. Appl., 21 (1990), 673-692. doi: 10.1137/0521036.

[10]

J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains, R. Soc. Lond. A, 457 (2001), 1841-1853. doi: 10.1098/rspa.2001.0789.

[11]

J. W.-H. So, J. Wu and X. Zou, Structured population on two patches: Modeling dispersal and delay, J. Math. Biology, 43 (2001), 37-51. doi: 10.1007/s002850100081.

[12]

H. O. Walther, The 2-dimensional attractor of $x'(t)=-\mu x(t)+f(x(t-1))$, Mem. Amer. Math. Soc., 113 (1995), 544.

[13]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Diff. Eqns., 13 (2001), 651-687. doi: 10.1023/A:1016690424892.

[14]

D. Xu and X. Zhao, A nonlocal reaction-diffusion population model with stage structure, Can. Appl. Math. Q., 11 (2003), 303-320.

[15]

T. Yi, Y. Chen and J. Wu, Global dynamics of delayed reaction-diffusion equations in unbounded domains, Z. Angew. Math. Phys., 63 (2012), 793-812. doi: 10.1007/s00033-012-0224-x.

[16]

T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: a non-monotone case, J. Differ. Equ., 245 (2008), 3376-3388. doi: 10.1016/j.jde.2008.03.007.

[17]

T. Yi and X. Zou, Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain, J. Differ. Equ., 251 (2011), 2598-2611. doi: 10.1016/j.jde.2011.04.027.

[18]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466 (2010), 2955-2973. doi: 10.1098/rspa.2009.0650.

[1]

Zhaoquan Xu, Chufen Wu. Spreading speeds for a class of non-local convolution differential equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4479-4492. doi: 10.3934/dcdsb.2020108

[2]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[3]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[4]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks and Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[5]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the non-local Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2515-2535. doi: 10.3934/dcdsb.2021146

[8]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[9]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[10]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[11]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[12]

Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107

[13]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[14]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[15]

Yanan Li, Alexandre N. Carvalho, Tito L. M. Luna, Estefani M. Moreira. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5181-5196. doi: 10.3934/cpaa.2020232

[16]

Tahir Bachar Issa, Rachidi Bolaji Salako. Asymptotic dynamics in a two-species chemotaxis model with non-local terms. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3839-3874. doi: 10.3934/dcdsb.2017193

[17]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[18]

Yong-Kui Chang, Xiaojing Liu. Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability. Evolution Equations and Control Theory, 2020, 9 (3) : 845-863. doi: 10.3934/eect.2020036

[19]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[20]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]