\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pullback attractors for non-autonomous evolution equations with spatially variable exponents

Abstract Related Papers Cited by
  • Dissipative problems in electrorheological fluids, porous media and image processing often involve spatially dependent exponents. They also include time-dependent terms as in equation \begin{eqnarray} \frac{\partial u_\lambda}{\partial t}(t)-\textrm{div}(D_\lambda(t)|\nabla u_\lambda(t)|^{p(x)-2}\nabla u_\lambda(t))+|u_\lambda(t)|^{p(x)-2}u_\lambda(t) = B(t,u_\lambda(t)) \end{eqnarray} on a bounded smooth domain $\Omega$ in $\mathbb{R}^n$, $n\geq 1$, with a homogeneous Neumann boundary condition, where the exponent $p(\cdot)\in C(\bar{\Omega}, \mathbb{R}^+)$ satisfying $p^-$ $:=$ $\min p(x)$ $>$ $2$, and $\lambda$ $\in$ $[0,\infty)$ is a parameter.
    The existence and upper semicontinuity of pullback attractors are established for this equation under the assumptions, amongst others, that $B$ is globally Lipschitz in its second variable and $D_\lambda$ $ \in $ $L^\infty([\tau,T] \times \Omega, \mathbb{R}^+)$ is bounded from above and below, is monotonically nonincreasing in time and continuous in the parameter $\lambda$. The global existence and uniqueness of strong solutions is obtained through results of Yotsutani.
    Mathematics Subject Classification: Primary: 35K55, 35K92; Secondary: 35A16, 35B40, 35B41, 37B55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Computers and Mathematics with Applications, 56 (2008), 874-882.doi: 10.1016/j.camwa.2008.01.017.

    [2]

    G. Akagi and K. Matsuura, Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)-$Laplacian, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference, Suppl. Vol. I (2011), 22-31.

    [3]

    G. Akagi and K. Matsuura, Nonlinear diffusion equations driven by $p(\cdot)-$Laplacian, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 37-64.doi: 10.1007/s00030-012-0153-6.

    [4]

    B. Amaziane, L. Pankratov and A. Piatnitski, Nonlinear flow through double porosity media in variable exponent Sobolev spaces, Nonlinear Anal.: Real World Applications, 10 (2009), 2521-2530.doi: 10.1016/j.nonrwa.2008.05.008.

    [5]

    S. N. Antonstev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Analysis, 60 (2005), 515-545.doi: 10.1016/j.na.2004.09.026.

    [6]

    S. N. Antontsev and S. Shmarev, Anisotropic parabolic equations with variable nonlinearity, Publications Mathematiques, 53 (2009), 355-399.doi: 10.5565/PUBLMAT-53209-04.

    [7]

    S. N. Antontsev and S. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, J. Mathematical Sciences, 150 (2008), 2289-2301.doi: 10.1007/s10958-008-0129-6.

    [8]

    V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff International Publishing, 1976.

    [9]

    H. Brèzis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Amsterdam: North-Holland Publishing Company, 1973.

    [10]

    E. Capelato, K. Schiabel-Silva and R. P. Silva, Perturbation of a nonautonomous problem in $\mathbbR^n$, Math. Meth. Appl. Sci., 36 (2013), 1625-1630.doi: 10.1002/mma.2712.

    [11]

    T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal., 72 (2010), 1967-1976.doi: 10.1016/j.na.2009.09.037.

    [12]

    A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer-Verlag, 2012.doi: 10.1007/978-1-4614-4581-4.

    [13]

    G. Chen and C. Zhong, Uniform attractors for non-autonomous $p-$Laplacian equations, Nonlinear Anal., 68 (2008), 3349-3363.doi: 10.1016/j.na.2007.03.025.

    [14]

    Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Math., 66 (2006), 1383-1406.doi: 10.1137/050624522.

    [15]

    L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011.doi: 10.1007/978-3-642-18363-8.

    [16]

    M. Effendiev, Attractors for Degenerate Parabolic type Equations, Mathematical Surveys and Monographs, 192. American math. Soc., Providence, RI, 2013.

    [17]

    F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions, Computers and mathematics with applications, 53 (2007), 595-604.doi: 10.1016/j.camwa.2006.02.032.

    [18]

    X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)-$laplacian Dirichlet problems, Nonlinear Anal., 52 (2003), 1843-1852.doi: 10.1016/S0362-546X(02)00150-5.

    [19]

    X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.doi: 10.1006/jmaa.2001.7618.

    [20]

    X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.doi: 10.1006/jmaa.2000.7617.

    [21]

    Z. Guo, Q. Liu, J. Sun and B. Wu, Reaction-diffusion systems with $p(x)-$growth for image denoising, Nonlinear Analysis: Real World Applications, 12 (2011), 2904-2918.doi: 10.1016/j.nonrwa.2011.04.015.

    [22]

    P. Harjulehto, P. Hästö, U. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Analysis, 72 (2010), 4551-4574.doi: 10.1016/j.na.2010.02.033.

    [23]

    P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176. Amer. Math. Soc., Providence, 2011.

    [24]

    S. Lian, W. Gao, H. Yuan and C. Cao, Existence of solutions to an initial Dirichlet problem of evolutional $p(x)-$Laplace equations, Ann. I. H. Poincaré - AN, 29 (2012), 377-399.doi: 10.1016/j.anihpc.2012.01.001.

    [25]

    Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020-1029.doi: 10.1016/j.amc.2006.11.187.

    [26]

    W. Niu, Long-time behavior for a nonlinear parabolic problem with variable exponents, J. Math. Anal. Appl., 393 (2012), 56-65.doi: 10.1016/j.jmaa.2012.03.039.

    [27]

    K. Rajagopal and M. Růžička, Mathematical modelling of electrorheological materials, Contin. Mech. Thermodyn., 13 (2001), 59-78.doi: 10.1007/s001610100034.

    [28]

    M. Růžička, Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris Sér. I, 329 (1999), 393-398.doi: 10.1016/S0764-4442(00)88612-7.

    [29]

    M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lectures Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.doi: 10.1007/BFb0104029.

    [30]

    J. Simsen, A global attractor for a $p(x)$-Laplacian problem, Nonlinear Anal., 73 (2010), 3278-3283.doi: 10.1016/j.na.2010.06.087.

    [31]

    J. Simsen and C. B. Gentile, Well-posed $p$-laplacian problems with large diffusion, Nonlinear Anal., 71 (2009), 4609-4617.doi: 10.1016/j.na.2009.03.041.

    [32]

    J. Simsen and M. S. Simsen, PDE and ODE Limit Problems for $p(x)$-Laplacian Parabolic Equations, J. Math. Anal. Appl., 383 (2011), 71-81.doi: 10.1016/j.jmaa.2011.05.003.

    [33]

    J. Simsen, M. S. Simsen and M. R. T. Primo, Continuity of the flows and upper semicontinuity of global attractors for $p_s(x)$-Laplacian parabolic problems, J. Math. Anal. Appl., 398 (2013), 138-150.doi: 10.1016/j.jmaa.2012.08.047.

    [34]

    J. Simsen, M. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems, J. Math. Anal. Appl., 413 (2014), 685-699.doi: 10.1016/j.jmaa.2013.12.019.

    [35]

    L. Songzhe, G. Wenjie, C. Chunling and Y. Hongjun, Study of the solutions to a model porous medium equation with variable exponent of nonlinearity, J. Math. Anal. Appl., 342 (2008), 27-38.doi: 10.1016/j.jmaa.2007.11.046.

    [36]

    R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4684-0313-8.

    [37]

    B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3887-3902.doi: 10.1016/j.na.2010.01.026.

    [38]

    L. Yang, M. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions, Discrete Contin. Dyn. Syst. Series B, 17 (2012), 2635-2651.doi: 10.3934/dcdsb.2012.17.2635.

    [39]

    S. Yotsutani, Evolution equations associated with the subdifferentials, J. Math. Soc. Japan, 31 (1978), 623-646.doi: 10.2969/jmsj/03140623.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return