• Previous Article
    S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws
  • CPAA Home
  • This Issue
  • Next Article
    Pullback attractors for non-autonomous evolution equations with spatially variable exponents
November  2014, 13(6): 2559-2587. doi: 10.3934/cpaa.2014.13.2559

Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

Department of Mathematics, Shanghai Jiaotong University, Shang hai 200240

3. 

LMAM, School of Mathematical Sciences, Peking University, Bejing 100871

4. 

Department of Mathematics Education, Sangmyung University, Seoul 110--743, South Korea

Received  April 2014 Revised  May 2014 Published  July 2014

In this paper we consider the global gradient estimates for weak solutions of $p(x)$-Laplacian type equation with small BMO coefficients in a $\delta$-Reifenberg flat domain. The modified Vitali covering lemma, good $\lambda$-inequalities, the maximal function technique and the appropriate localization method are the main analytical tools. The global Caldéron--Zygmund theory for such equations is obtained. Moreover, we generalize the regularity estimates in the Lebesgue spaces to the Orlicz spaces.
Citation: Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559
References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259. doi: 10.1007/s00205-002-0208-7.

[2]

E. Acerbi and G. Mingione, Gradient estimates for the $p(x)$-Laplacean system, J. reine angew. Math., 584 (2005), 117-148. doi: 10.1515/crll.2005.2005.584.117.

[3]

R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd edition, Academic Press, New York, 2003.

[4]

K. Astala, T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-bounded distortion, Math. Ann., 317 (2000), 703-726. doi: 10.1007/PL00004420.

[5]

V. Bögelein and M. Parviainen, Self-improving property of nonlinear higher order parabolic systems near the boundary, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 21-54. doi: 10.1007/s00030-009-0038-5.

[6]

S. Byun and S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 291-313. doi: 10.1016/j.anihpc.2012.08.001.

[7]

S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310. doi: 10.1002/cpa.20037.

[8]

S. Byun, L. Wang and S. Zhou, Nonlinear elliptic equations with small BMO coefficients in Reifenberg domains, J. Funct. Anal., 250 (2007), 167-196. doi: 10.1016/j.jfa.2007.04.021.

[9]

S. Byun, F. Yao and S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations, J. Funct. Anal., 255 (2008), 1851-1873. doi: 10.1016/j.jfa.2008.09.007.

[10]

L. A. Caffarelli and I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1-21. doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N.

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522.

[12]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math., 115 (1993), 1107-1134. doi: 10.2307/2375066.

[13]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18363-8.

[14]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617.

[15]

F. Giannetti and A. Passarelli di Napoli, Regularity results for a new class of functionals with non-standard growth conditions, J. Differential Equations, 254 (2013), 1280-1305. doi: 10.1016/j.jde.2012.10.011.

[16]

P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values, Math. Bohem., 132 (2007), 125-136.

[17]

T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators, Studia Math., 75 (1983), 293-312.

[18]

T. Iwaniec, $p$-harmonic tensors and quasiregular mappings, Ann. Math., 136 (1992), 589-624. doi: 10.2307/2946602.

[19]

T. Iwaniec and A. Verde, On the operator $\mathcalL(f)=f\log|f|$, J. Funct. Anal., 169 (1999), 391-420. doi: 10.1006/jfan.1999.3443.

[20]

J. Kinnumen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differential Equations, 24 (1999), 2043-2068. doi: 10.1080/03605309908821494.

[21]

J. Kinnunen and S. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients, Differential Integral Equations, 14 (2001), 475-492.

[22]

V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific, 1991. doi: 10.1142/9789814360302.

[23]

T. Kilpeläinen and P. Koskela, Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal., 23 (1994), 899-909. doi: 10.1016/0362-546X(94)90127-9.

[24]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.

[25]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3.

[26]

T. Mengesha and N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Ration. Mech. Anal., 203 (2012), 189-216. doi: 10.1007/s00205-011-0446-7.

[27]

K. Rajagopal and M. Růžička, Mathematical modeling of electro-rheological fluids, Contin. Mech. Thermodyn., 13 (2001), 59-78.

[28]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000. doi: 10.1007/BFb0104029.

[29]

J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag, Berlin, 1983.

[30]

M. Rao and Z. Ren, Applications of Orlicz Spaces, Marcel Dekker Inc., New York, 2002. doi: 10.1201/9780203910863.

[31]

E. M. Stein, Harmonic Analysis, Princeton University Press, Princeton, NJ, 1993.

[32]

L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation, Proc. Amer. Math. Soc., 137 (2009), 2037-2047. doi: 10.1090/S0002-9939-09-09805-0.

[33]

V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997), 105-116.

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259. doi: 10.1007/s00205-002-0208-7.

[2]

E. Acerbi and G. Mingione, Gradient estimates for the $p(x)$-Laplacean system, J. reine angew. Math., 584 (2005), 117-148. doi: 10.1515/crll.2005.2005.584.117.

[3]

R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd edition, Academic Press, New York, 2003.

[4]

K. Astala, T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-bounded distortion, Math. Ann., 317 (2000), 703-726. doi: 10.1007/PL00004420.

[5]

V. Bögelein and M. Parviainen, Self-improving property of nonlinear higher order parabolic systems near the boundary, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 21-54. doi: 10.1007/s00030-009-0038-5.

[6]

S. Byun and S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 291-313. doi: 10.1016/j.anihpc.2012.08.001.

[7]

S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310. doi: 10.1002/cpa.20037.

[8]

S. Byun, L. Wang and S. Zhou, Nonlinear elliptic equations with small BMO coefficients in Reifenberg domains, J. Funct. Anal., 250 (2007), 167-196. doi: 10.1016/j.jfa.2007.04.021.

[9]

S. Byun, F. Yao and S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations, J. Funct. Anal., 255 (2008), 1851-1873. doi: 10.1016/j.jfa.2008.09.007.

[10]

L. A. Caffarelli and I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1-21. doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N.

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522.

[12]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math., 115 (1993), 1107-1134. doi: 10.2307/2375066.

[13]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18363-8.

[14]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617.

[15]

F. Giannetti and A. Passarelli di Napoli, Regularity results for a new class of functionals with non-standard growth conditions, J. Differential Equations, 254 (2013), 1280-1305. doi: 10.1016/j.jde.2012.10.011.

[16]

P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values, Math. Bohem., 132 (2007), 125-136.

[17]

T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators, Studia Math., 75 (1983), 293-312.

[18]

T. Iwaniec, $p$-harmonic tensors and quasiregular mappings, Ann. Math., 136 (1992), 589-624. doi: 10.2307/2946602.

[19]

T. Iwaniec and A. Verde, On the operator $\mathcalL(f)=f\log|f|$, J. Funct. Anal., 169 (1999), 391-420. doi: 10.1006/jfan.1999.3443.

[20]

J. Kinnumen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differential Equations, 24 (1999), 2043-2068. doi: 10.1080/03605309908821494.

[21]

J. Kinnunen and S. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients, Differential Integral Equations, 14 (2001), 475-492.

[22]

V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific, 1991. doi: 10.1142/9789814360302.

[23]

T. Kilpeläinen and P. Koskela, Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal., 23 (1994), 899-909. doi: 10.1016/0362-546X(94)90127-9.

[24]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.

[25]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3.

[26]

T. Mengesha and N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Ration. Mech. Anal., 203 (2012), 189-216. doi: 10.1007/s00205-011-0446-7.

[27]

K. Rajagopal and M. Růžička, Mathematical modeling of electro-rheological fluids, Contin. Mech. Thermodyn., 13 (2001), 59-78.

[28]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000. doi: 10.1007/BFb0104029.

[29]

J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag, Berlin, 1983.

[30]

M. Rao and Z. Ren, Applications of Orlicz Spaces, Marcel Dekker Inc., New York, 2002. doi: 10.1201/9780203910863.

[31]

E. M. Stein, Harmonic Analysis, Princeton University Press, Princeton, NJ, 1993.

[32]

L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation, Proc. Amer. Math. Soc., 137 (2009), 2037-2047. doi: 10.1090/S0002-9939-09-09805-0.

[33]

V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997), 105-116.

[1]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[2]

Sun-Sig Byun, Lihe Wang. $W^{1,p}$ regularity for the conormal derivative problem with parabolic BMO nonlinearity in reifenberg domains. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 617-637. doi: 10.3934/dcds.2008.20.617

[3]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[4]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[5]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[6]

Ángel Arroyo, Joonas Heino, Mikko Parviainen. Tug-of-war games with varying probabilities and the normalized p(x)-laplacian. Communications on Pure and Applied Analysis, 2017, 16 (3) : 915-944. doi: 10.3934/cpaa.2017044

[7]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[8]

Caiyan Li, Dongsheng Li. $ W^{1,p} $ estimates for elliptic systems on composite material with almost partially BMO coefficients. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3143-3159. doi: 10.3934/cpaa.2021100

[9]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure and Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[10]

Andrea Cianchi, Vladimir Maz'ya. Global gradient estimates in elliptic problems under minimal data and domain regularity. Communications on Pure and Applied Analysis, 2015, 14 (1) : 285-311. doi: 10.3934/cpaa.2015.14.285

[11]

Lujuan Yu. The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025

[12]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[13]

Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425

[14]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029

[15]

Shuang Liang, Shenzhou Zheng. Variable lorentz estimate for stationary stokes system with partially BMO coefficients. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2879-2903. doi: 10.3934/cpaa.2019129

[16]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[17]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[18]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1121-1147. doi: 10.3934/dcdsb.2021083

[19]

Chenchen Mou. Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2335-2362. doi: 10.3934/cpaa.2015.14.2335

[20]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (202)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]