Citation: |
[1] |
T. Chang, G. Q. Chen and S. Yang, On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves, Discrete and Continuous Dynamical Systems, 1 (1995), 555-584.doi: 10.3934/dcds.1995.1.555. |
[2] |
T. Chang, G. Q. Chen and S. Yang, On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities, Discrete and Continuous Dynamical Systems, 6 (2000), 419-430.doi: 10.3934/dcds.2000.6.419. |
[3] |
T. Chang and L. Hsiao, The Riemann problem and interaction of waves in gas dynamics, Pitman Monographs, Longman Scientific and technica, 41 (1989), 95-161. |
[4] |
S. X. Chen and A. F. Qu, Two-dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal., 44 (2012), 2146-2178.doi: 10.1137/110838091. |
[5] |
X. Chen and Y. X. Zheng, The interaction of rarefaction waves of the two-dimensional Euler equations, Indiana Univ. Math. J., 59 (2010), 231-256.doi: 10.1512/iumj.2010.59.3752. |
[6] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, New York, Interscience, 1948. |
[7] |
R. Courant and D. Hilbert, Methodern der mathematischen Physik, Vol.II. Springer, Berlin, 1937. (Reprint: Interscience, New York, 1943.) |
[8] |
Z. H. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics, Arch. Ration. Mech. Anal., 155 (2000), 277-298.doi: 10.1007/s002050000113. |
[9] |
L. H. Guo, W. C. Sheng and T. Zhang, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Commun. Pure Appl. Anal., 9 (2010), 431-458.doi: 10.3934/cpaa.2010.9.431. |
[10] |
Y. B. Hu, J. Q. Li and W. C. Sheng, Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations, Z. angew Math. Phys., 63 (2012), 1021-1046.doi: 10.1007/s00033-012-0203-2. |
[11] |
Y. B. Hu and W. C. Sheng, Characteristic decomposition of the 2$\times$2 quasilinear strictly hyperbolic systems, Appl. Math. Lett., 25 (2012), 262-267.doi: 10.1016/j.aml.2011.08.021. |
[12] |
D. X. Kong, K. F. Liu and Y. Z. Wang, Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases, Sci. China Math., 53 (2010), 719-738.doi: 10.1007/s11425-010-0060-4. |
[13] |
G. Lai, W. C. Sheng and Y. X. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in multi-dimensions, Discrete Contin. Dyn. Syst., 31 (2011), 489-523.doi: 10.3934/dcds.2011.31.489. |
[14] |
L. E. Levine, The expansion of a wedge of gas into a vacuum, Proc. Camb. Philol. Soc., 64 (1968), 1151-1163. |
[15] |
J. Q. Li, On the two-dimensional gas expansion for compressible Euler equations, SIAM J. Appl. Math., 62 (2001/2002), 831-852. doi: 10.1137/S0036139900361349. |
[16] |
J. Q. Li, Global solution of an initial-value problem for two-dimesional compressible Euler equations, J. Differential Equations, 179 (2002), 178-194.doi: 10.1006/jdeq.2001.4025. |
[17] |
J. Q. Li, Z. C. Yang and Y. X. Zheng, Characteristic decompositions and interactions of rarefaction waves of 2-d Euler equations, J. Differential Equations, 250 (2011), 782-798.doi: 10.1016/j.jde.2010.07.009. |
[18] |
J. Q. Li, T. Zhang and Y. X. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations, Commu. Math. Phys., 267 (2006), 1-12.doi: 10.1007/s00220-006-0033-1. |
[19] |
J. Q. Li and Y. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Rational. Mech. Anal., 193 (2009), 623-657.doi: 10.1007/s00205-008-0140-6. |
[20] |
J. Q. Li and Y. X. Zheng, Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations, Commun. Math. Phys., 296 (2010), 303-321.doi: 10.1007/s00220-010-1019-6. |
[21] |
T. T. Li and W. C. Yu, Boundary value problems of quasilinear hyperbolic system, Duke University Mathematics Series V, Durham, 1985. |
[22] |
V. V. Meleshko and G. J. F. van Heijst, On Chaplygin's investigations of two-dimensional vortex structures in an inviscid fluid, J. Fluid Mech., 272 (1994), 157-182.doi: 10.1017/S0022112094004428. |
[23] |
D. Serre, Multidimensional shock interaction for a Chaplygin gas, Arch. Rational Mech. Anal., 191 (2009), 539-577.doi: 10.1007/s00205-008-0110-z. |
[24] |
V. A. Suchkov, Flow into a vacuum along an oblique wall, J. Appl. Math. Mech., 27 (1963), 1132-1134. |
[25] |
G. D. Wang, B. C. Chen and Y. B. Hu, The two-dimensional Riemann problem for Chaplygin gas dynamics with three constant states, J. Math. Anal. Appl., 393 (2012), 544-562.doi: 10.1016/j.jmaa.2012.03.017. |
[26] |
R. H. Wang and Z. Q. Wu, On mixed initial boundary value problem for quasi-linear hyperbolic system of partial differential equations in two independent variables (in Chinese), Acta. Sci. Nat. Jilin. Univ., 2 (1963), 459-502. |
[27] |
T. Zhang and Y. X. Zheng, Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Math. Anal., 21 (1990), 593-630.doi: 10.1137/0521032. |
[28] |
W. X. Zhao, The expansion of gas from a wedge with small angle into a vaccum, Comm. Pure Appl. Anal., 12 (2013), 2319-2330.doi: 10.3934/cpaa.2013.12.2319. |
[29] |
Y. Zheng, The compressible Euler system in two space dimensions, Nonlinear conservation laws, fluid systems and related topics, 301-390, Ser. Contemp. Appl. Math. CAM, 13, World Sci. Publishing, Singapore, 2009.doi: 10.1142/9789814273282_0005. |