\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations

Abstract Related Papers Cited by
  • Extending previuos results ([16, 1, 7]), we study the vanishing viscosity limit of solutions of space-time periodic Hamilton-Jacobi-Belllman equations, assuming that the ``Aubry set'' is the union of a finite number of hyperbolic periodic orbits of the Hamiltonian flow.
    Mathematics Subject Classification: Primary: 37J50, 49L25; Secondary: 70H20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Anantharaman, R. Iturriaga, P. Padilla and H. Sánchez-Morgado, Physical solutions of the Hamilton-Jacobi equation, Disc. Cont. Dyn. Sys. Series B, 5 (2005), 513-528.doi: 10.3934/dcdsb.2005.5.513.

    [2]

    M. Bardi, I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,'' Birkhausser, 1997.

    [3]

    G. Barles, "Solutions de viscosité des équations de Hamilton Jacobi,'' Mathématiques et Applications 17, Springer-Verlag, 1994.

    [4]

    G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., 32 (2001), 1311-1323.doi: 10.1137/S0036141000369344.

    [5]

    P. Bernard, Smooth critical subsolutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.

    [6]

    P. Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier, Grenoble, 52 (2002), 1533-1568.doi: 10.5802/aif.1924.

    [7]

    U. Bessi, Aubry-Mather theory and Hamilton-Jacobi equations, Comm. Math. Phys., 235 (2003), 495-511.doi: 10.1007/s00220-002-0781-5.

    [8]

    G. Contreras and R. Iturriaga, Convex Hamiltonians without conjugate points, Erg. Th. Dynam. Sys., 19 (1999), 901-952.doi: 10.1017/S014338579913387X.

    [9]

    G. Contreras, R. Iturriaga and H. Sánchez-MorgadoWeak solutions of the Hamilton Jacobi equation for Time Periodic Lagrangians, http://www.matem.unam.mx/hector/wham.pdf, Preprint.

    [10]

    M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), 487-502.doi: 10.1090/S0002-9947-1984-0732102-X.

    [11]

    L. C. Evans, "Partial Differential Equations,'' Graduate Studies in Mathematics 19, AMS, 1997.

    [12]

    A. Fathi, "Weak KAM Theorem in Lagrangian Dynamics,'' To appear in Cambridge Studies in Advanced Mathematics.

    [13]

    A. Fathi, On existence of smooth critical subsolutions of the Hamilton-Jacobi equation, Pub. Mat. Uruguay, 12 (2011), 87-98.

    [14]

    W. Fleming and M. Soner, "Controlled Markov Processes and Viscosity Solutions,'' Springer 1993.

    [15]

    M. I. Freidlin and A. D. Wentzell, "Random Perturbations of Dynamical Systems,'' Springer 1998.

    [16]

    H. R. Jauslin, H. O. Kreiss and J. Moser, On the forced Burgers equation with periodic boundary conditions, "Differential Equations, La Pietra,'' Proc. of Symp. Pure Math., 65 (1996), 133-153.

    [17]

    D. Massart, Subsolution of time-periodic Hamilton-Jacobi equations, Erg. Th. Dynam. Sys., 27 (2007), 1253-1265.doi: 10.1017/S0143385707000089.

    [18]

    T. Rockafellar, "Convex Analysis,'' Princeton University Press, 1972.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(54) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return