• Previous Article
    A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient
  • CPAA Home
  • This Issue
  • Next Article
    Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations
January  2014, 13(1): 347-369. doi: 10.3934/cpaa.2014.13.347

Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis

1. 

Center for Partial Differential Equations, East China Normal University, Minhang, 200241, Shanghai, China

2. 

Department of Applied Mathematics, Harbin Engineering University, Harbin, 150001, Heilongjiang, China, China

3. 

Centre for Mathematical Biology, Mathematical Institute, University of Oxford, St Giles 24-29, OX1 3LB, United Kingdom

Received  March 2013 Revised  April 2013 Published  July 2013

In this paper, a homogeneous reaction-diffusion model describing the control growth of mammalian hair is investigated. We provide some global analyses of the model depending upon some parametric thresholds/constraints. We find that when one of the dimensionless parameter is less than one, then the unique positive equilibrium is globally asymptotically stable. On the contrary, when this threshold is greater than one, the existence of both steady-state and Hopf bifurcations can be observed under further parametric constraints. In addition, we find that both spatially homogeneous and heterogeneous oscillatory solutions can be seen for some spatially independent parameters provided that some conditions are met. Under these conditions, the direction and stability of these oscillatory behaviors, global stability of the unique constant steady state and the local orbital asymptotic stability of the spatially homogeneous periodic orbits are also investigated.
Citation: Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure and Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347
References:
[1]

R. A. Barrio, R. E. Baker, B. Vaughan, K. Tribuzy, M. R. de Carvalho, R. Bassanezi and P. K. Maini, Modelling the skin pattern of fishes, Phys. Rev. E., 79 (2009), 031908. doi: 10.1103/PhysRevE.79.031908.

[2]

R. E. Baker, S. Schnell and P. K. Maini, A mathematical investigation of a new model for somitogenesis, J. Math. Biol., 52 (2006), 458-482. doi: 10.1007/s00285-005-0362-2.

[3]

R. E. Baker, S. Schnell, S. and P. K. Maini, A clock and wavefront mechanism for somite formation, Dev. Biol., 293 (2006), 116-126. doi: 10.1016/j.ydbio.2006.01.018.

[4]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39. doi: 10.1007/BF00289234.

[5]

E. A. Gaffney, K. Pugh, P. K. Maini and F. Arnold, Investigating a simple model of cutaneous wound healing angiogenesis, J. Math. Biol., 45 (2002), 337-374. doi: 10.1007/s002850200161.

[6]

B. D. Hassard, N. D. Kazarinoff and Y. Wan, "Theory and Application of Hopf Bifurcation," Cambridge Univ. Press, Cambridge, 1981.

[7]

S. Kondo and R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376 (2002), 765-768. doi: 10.1038/376765a0.

[8]

P. De Kepper, V. Castets, E. Dulos and J. Boissonade, Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction, Physica D., 49 (1991), 161-169. doi: 10.1016/0167-2789(91)90204-M.

[9]

S. A. Kauffman, R. M. Shymko and K. Trabert, Control of sequential compartment formation in drosophila, Science, 199 (1978), 259-270. doi: 10.1126/science.413193.

[10]

I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chloride-iodide-malonic acid-starch reaction system, Science, 251 (1991), 650652. doi: 10.1126/science.251.4994.650.

[11]

I. Lengyel and I. R. Epstein, A chemical approach to designing Turing patterns in reaction-diffusion systems, Proc. Natl. Acad. Sci., USA, 89 (1992), 3977-3979. doi: 10.1073/pnas.89.9.3977.

[12]

C.-M. Lin, T.-X. Jiang, R. E. Baker, P. K. Maini, R. B. Widelitz and C.-M. Chuong, Spots versus stripes: FGF/ERK signalling and mesenchymal condensation during feather pattern formation, Dev. Biol., 334 (2009), 369-382. doi: 10.1016/j.ydbio.2009.07.036.

[13]

P. Liu, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600. doi: 10.1016/j.jfa.2007.06.015.

[14]

P. Liu, J. Shi and Y. Wang, Bifurcation from a degenerate simple eigenvalue, J. Funct. Anal., 264 (2013), 2269-2299. doi: http://dx.doi.org/10.1016/j.jfa.2013.02.009.

[15]

S. S. Liaw, C. C. Yang, R. T. Liu and J. T. Hong, Turing model for the patterns of lady beetles, Phys. Rev., 64 (2001), 041909.

[16]

J. R. Mooney, Steady states of a reaction-diffusion system on the off-centre annulus, SIAM J. Appl. Math., 44 (1984), 745-761. doi: 10.1137/0144053.

[17]

J. D. Murray, "Mathematical Biology," Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[18]

P. K. Maini, R. E. Baker and C. M. Chuong, The Turing model comes of molecular age, Science, 314 (2006), 397-1398. doi: 10.1126/science.1136396.

[19]

D.G. Miguez, M. Dolnik, A. P. Munuzuri and L. Kramer, Effect of axial growth on Turing pattern formation, Phys. Rev. L., 96 (2006), 048304. doi: 10.1103/PhysRevLett.96.048304.

[20]

S. McDougall, J. Dallon, J. A. Sherratt and P. K. Maini, Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications, Phil. Trans. Roy. Soc., A 364 (2006), 1385-1405.

[21]

P. K. Maini, D. S. L. McElwain and S. Leavesley, Travelling waves in a wound healing assay, Appl. Math. Lett., 17 (2004), 575-580. doi: 10.1016/S0893-9659(04)90128-0.

[22]

H. Meinhardt, P. Prusinkiewicz and D. R. Fowler, "The Algorithmic Beauty of Sea Shells," Springer Verlag, Berlin, 2003. doi: 10.1007/978-3-662-05291-4.

[23]

P. De Mottoni and F. Rothe, Convergence to homogeneous equilibrium state for generalized Volterra-Lotka systems with diffusion, SIAM J. Appl. Math., 37 (1979), 648-663. doi: 10.1137/0137048.

[24]

B. N. Nagorcka, Evidence for a reaction-diffusion system as a mechanism controlling mammalian hair growth, BioSystems, (1984), 323-332.

[25]

B. N. Nagorcka and J. R. Mooney, The role of a reaction-diffusion system in the formation of hair fibres, J. Theor. Biol., 98 (1982), 5757-607. doi: 10.1016/0022-5193(82)90139-4.

[26]

W. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Tran. Amer. Math. Soc., 357 (2005), 3953-3969. doi: 10.1090/S0002-9947-05-04010-9.

[27]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models," Springer-Verlag, Berlin, 1980.

[28]

M. V. Plikus, D. De La Cruz, J. Mayer, R. E. Baker, R. Maxon, P. K. Maini and C.-M. Chuong, Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration, Nature, 451 (2008), 340-344 doi: 10.1038/nature06457.

[29]

R. Peng, F. Yi and X. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, Jour. Diff. Equa., 254 (2013), 2465-2498. doi: 10.1016/j.jde.2012.12.009.

[30]

S. Ruan, Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis, Natural Resource Modelling, 11 (1998), 131-142.

[31]

S. Ruan, Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling, IMA J. Appl. Math., 60 (1998), 15-32. doi: 10.1093/imamat/61.1.15.

[32]

M. B. Short et al, A statistical model of criminal behavior, Math. Models Method. in Appl. Sci., 18 (2008), 1249-1267. doi: 10.1142/S0218202508003029.

[33]

M. B. Short et al, Dissipation and displacement of hotspots in reaction-diffusion models of crime, Proc. Nat. Acad. Sci., 107 (2010), 3961-3965. doi: 10.1073/pnas.0910921107.

[34]

S. Sick, S. Reinker, J. Timmer and T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science, 314 (2006), 1447-1450. doi: 10.1126/science.1130088.

[35]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic system on bounded domains, Jour. Diff. Equa., 246 (2009), 2788-2812. doi: 10.1016/j.jde.2008.09.009.

[36]

M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell, Bull. Math. Biol., 70 (2008), 1525-1569. doi: 10.1007/s11538-008-9322-5.

[37]

M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II: the single cell, Bull. Math. Biol., 70 (2008), 1570-1607. doi: 10.1007/s11538-008-9322-5.

[38]

A. M. Turing, The chemical basis of morphoegenesis, Phil. Tans. R. Soc. London, Ser. B, 237 (1952), 37-72.

[39]

J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, Jour. Diff. Equa., 25 (2011), 1276-1304. doi: 10.1016/j.jde.2011.03.004.

[40]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 3 (2011), 291-331. doi: 10.1007/s00285-010-0332-1.

[41]

F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system, Jour. Diff. Equa., 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024.

[42]

F. Yi, J. Wei and J. Shi, Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system, Appl. Math. Lett., 22 (2009), 52-55. doi: 10.1016/j.aml.2008.02.003.

show all references

References:
[1]

R. A. Barrio, R. E. Baker, B. Vaughan, K. Tribuzy, M. R. de Carvalho, R. Bassanezi and P. K. Maini, Modelling the skin pattern of fishes, Phys. Rev. E., 79 (2009), 031908. doi: 10.1103/PhysRevE.79.031908.

[2]

R. E. Baker, S. Schnell and P. K. Maini, A mathematical investigation of a new model for somitogenesis, J. Math. Biol., 52 (2006), 458-482. doi: 10.1007/s00285-005-0362-2.

[3]

R. E. Baker, S. Schnell, S. and P. K. Maini, A clock and wavefront mechanism for somite formation, Dev. Biol., 293 (2006), 116-126. doi: 10.1016/j.ydbio.2006.01.018.

[4]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39. doi: 10.1007/BF00289234.

[5]

E. A. Gaffney, K. Pugh, P. K. Maini and F. Arnold, Investigating a simple model of cutaneous wound healing angiogenesis, J. Math. Biol., 45 (2002), 337-374. doi: 10.1007/s002850200161.

[6]

B. D. Hassard, N. D. Kazarinoff and Y. Wan, "Theory and Application of Hopf Bifurcation," Cambridge Univ. Press, Cambridge, 1981.

[7]

S. Kondo and R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376 (2002), 765-768. doi: 10.1038/376765a0.

[8]

P. De Kepper, V. Castets, E. Dulos and J. Boissonade, Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction, Physica D., 49 (1991), 161-169. doi: 10.1016/0167-2789(91)90204-M.

[9]

S. A. Kauffman, R. M. Shymko and K. Trabert, Control of sequential compartment formation in drosophila, Science, 199 (1978), 259-270. doi: 10.1126/science.413193.

[10]

I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chloride-iodide-malonic acid-starch reaction system, Science, 251 (1991), 650652. doi: 10.1126/science.251.4994.650.

[11]

I. Lengyel and I. R. Epstein, A chemical approach to designing Turing patterns in reaction-diffusion systems, Proc. Natl. Acad. Sci., USA, 89 (1992), 3977-3979. doi: 10.1073/pnas.89.9.3977.

[12]

C.-M. Lin, T.-X. Jiang, R. E. Baker, P. K. Maini, R. B. Widelitz and C.-M. Chuong, Spots versus stripes: FGF/ERK signalling and mesenchymal condensation during feather pattern formation, Dev. Biol., 334 (2009), 369-382. doi: 10.1016/j.ydbio.2009.07.036.

[13]

P. Liu, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600. doi: 10.1016/j.jfa.2007.06.015.

[14]

P. Liu, J. Shi and Y. Wang, Bifurcation from a degenerate simple eigenvalue, J. Funct. Anal., 264 (2013), 2269-2299. doi: http://dx.doi.org/10.1016/j.jfa.2013.02.009.

[15]

S. S. Liaw, C. C. Yang, R. T. Liu and J. T. Hong, Turing model for the patterns of lady beetles, Phys. Rev., 64 (2001), 041909.

[16]

J. R. Mooney, Steady states of a reaction-diffusion system on the off-centre annulus, SIAM J. Appl. Math., 44 (1984), 745-761. doi: 10.1137/0144053.

[17]

J. D. Murray, "Mathematical Biology," Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[18]

P. K. Maini, R. E. Baker and C. M. Chuong, The Turing model comes of molecular age, Science, 314 (2006), 397-1398. doi: 10.1126/science.1136396.

[19]

D.G. Miguez, M. Dolnik, A. P. Munuzuri and L. Kramer, Effect of axial growth on Turing pattern formation, Phys. Rev. L., 96 (2006), 048304. doi: 10.1103/PhysRevLett.96.048304.

[20]

S. McDougall, J. Dallon, J. A. Sherratt and P. K. Maini, Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications, Phil. Trans. Roy. Soc., A 364 (2006), 1385-1405.

[21]

P. K. Maini, D. S. L. McElwain and S. Leavesley, Travelling waves in a wound healing assay, Appl. Math. Lett., 17 (2004), 575-580. doi: 10.1016/S0893-9659(04)90128-0.

[22]

H. Meinhardt, P. Prusinkiewicz and D. R. Fowler, "The Algorithmic Beauty of Sea Shells," Springer Verlag, Berlin, 2003. doi: 10.1007/978-3-662-05291-4.

[23]

P. De Mottoni and F. Rothe, Convergence to homogeneous equilibrium state for generalized Volterra-Lotka systems with diffusion, SIAM J. Appl. Math., 37 (1979), 648-663. doi: 10.1137/0137048.

[24]

B. N. Nagorcka, Evidence for a reaction-diffusion system as a mechanism controlling mammalian hair growth, BioSystems, (1984), 323-332.

[25]

B. N. Nagorcka and J. R. Mooney, The role of a reaction-diffusion system in the formation of hair fibres, J. Theor. Biol., 98 (1982), 5757-607. doi: 10.1016/0022-5193(82)90139-4.

[26]

W. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Tran. Amer. Math. Soc., 357 (2005), 3953-3969. doi: 10.1090/S0002-9947-05-04010-9.

[27]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models," Springer-Verlag, Berlin, 1980.

[28]

M. V. Plikus, D. De La Cruz, J. Mayer, R. E. Baker, R. Maxon, P. K. Maini and C.-M. Chuong, Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration, Nature, 451 (2008), 340-344 doi: 10.1038/nature06457.

[29]

R. Peng, F. Yi and X. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, Jour. Diff. Equa., 254 (2013), 2465-2498. doi: 10.1016/j.jde.2012.12.009.

[30]

S. Ruan, Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis, Natural Resource Modelling, 11 (1998), 131-142.

[31]

S. Ruan, Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling, IMA J. Appl. Math., 60 (1998), 15-32. doi: 10.1093/imamat/61.1.15.

[32]

M. B. Short et al, A statistical model of criminal behavior, Math. Models Method. in Appl. Sci., 18 (2008), 1249-1267. doi: 10.1142/S0218202508003029.

[33]

M. B. Short et al, Dissipation and displacement of hotspots in reaction-diffusion models of crime, Proc. Nat. Acad. Sci., 107 (2010), 3961-3965. doi: 10.1073/pnas.0910921107.

[34]

S. Sick, S. Reinker, J. Timmer and T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science, 314 (2006), 1447-1450. doi: 10.1126/science.1130088.

[35]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic system on bounded domains, Jour. Diff. Equa., 246 (2009), 2788-2812. doi: 10.1016/j.jde.2008.09.009.

[36]

M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell, Bull. Math. Biol., 70 (2008), 1525-1569. doi: 10.1007/s11538-008-9322-5.

[37]

M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II: the single cell, Bull. Math. Biol., 70 (2008), 1570-1607. doi: 10.1007/s11538-008-9322-5.

[38]

A. M. Turing, The chemical basis of morphoegenesis, Phil. Tans. R. Soc. London, Ser. B, 237 (1952), 37-72.

[39]

J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, Jour. Diff. Equa., 25 (2011), 1276-1304. doi: 10.1016/j.jde.2011.03.004.

[40]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 3 (2011), 291-331. doi: 10.1007/s00285-010-0332-1.

[41]

F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system, Jour. Diff. Equa., 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024.

[42]

F. Yi, J. Wei and J. Shi, Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system, Appl. Math. Lett., 22 (2009), 52-55. doi: 10.1016/j.aml.2008.02.003.

[1]

Xun Cao, Weihua Jiang. Double zero singularity and spatiotemporal patterns in a diffusive predator-prey model with nonlocal prey competition. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3461-3489. doi: 10.3934/dcdsb.2020069

[2]

Renji Han, Binxiang Dai, Lin Wang. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Mathematical Biosciences & Engineering, 2018, 15 (3) : 595-627. doi: 10.3934/mbe.2018027

[3]

Daifeng Duan, Ben Niu, Junjie Wei. Spatiotemporal dynamics in a diffusive Holling-Tanner model near codimension-two bifurcations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3683-3706. doi: 10.3934/dcdsb.2021202

[4]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[5]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[6]

Xueying Sun, Renhao Cui. Existence and asymptotic profiles of the steady state for a diffusive epidemic model with saturated incidence and spontaneous infection mechanism. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4503-4520. doi: 10.3934/dcdss.2021120

[7]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[8]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[9]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[10]

Dingyong Bai, Jianshe Yu, Yun Kang. Spatiotemporal dynamics of a diffusive predator-prey model with generalist predator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 2949-2973. doi: 10.3934/dcdss.2020132

[11]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[12]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[13]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[14]

Thorsten Hüls. A model function for non-autonomous bifurcations of maps. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 351-363. doi: 10.3934/dcdsb.2007.7.351

[15]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[16]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[17]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[18]

Cinzia Soresina. Hopf bifurcations in the full SKT model and where to find them. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022120

[19]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[20]

Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (91)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]