-
Previous Article
Schrödinger-like operators and the eikonal equation
- CPAA Home
- This Issue
- Next Article
Nontrivial solutions for Kirchhoff type equations via Morse theory
1. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
References:
[1] |
C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.
doi: 10.1016/j.camwa.2005.01.008. |
[2] |
T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419-441.
doi: 10.1016/0362-546X(95)00167-T. |
[3] |
G. Cerami, An existence criterion for the critical points on unbounded manifolds, (Italian) Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332-336. |
[4] |
K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems," Birkhäuser, Boston, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[5] |
C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations, 250 (2011), 1876-1908.
doi: 10.1016/j.jde.2010.11.017. |
[6] |
F. Fang and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations, J. Math Anal. Appl., 351 (2009), 138-146.
doi: 10.1016/j.jmaa.2008.09.064. |
[7] |
X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$, J. Differential Equations, 252 (2011), 1813-1834.
doi: 10.1016/j.jde.2011.08.035. |
[8] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.
doi: 10.1017/S0308210500013147. |
[9] |
Q. S. Jiu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian, J. Math. Anal.Appl., 281 (2003), 587-601.
doi: 10.1016/S0022-247X(03)00165-3. |
[10] |
G. B. Li and C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037. |
[11] |
C. G. Liu and Y. Q. Zheng, Linking solutions for $p$-Laplace equations with nonlinear boundary conditions and indefinite weight, Calc. Var. Partial Differential Equations, 41 (2011), 261-284.
doi: 10.1007/s00526-010-0361-z. |
[12] |
J. Q. Liu, The Morse index of a saddle point, Syst. Sci. Math. Sci., 2 (1989), 32-39. |
[13] |
J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems, J. Math. Anal. Appl., 258 (2001), 209-222.
doi: 10.1006/jmaa.2000.7374. |
[14] |
S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.
doi: 10.1016/j.na.2010.04.016. |
[15] |
S. B. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Mathematica Sinica, 46 (2003), 625-630 (Chinese). |
[16] |
T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett., 16 (2003), 243-248.
doi: 10.1016/S0893-9659(03)80038-1. |
[17] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287.
doi: 10.1016/j.na.2008.02.011. |
[18] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," in: Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[19] |
K. Perera, R. P. Agarwal and D. O'Regan, "Morse Theoretic Aspects of $p$-Laplacian Type Operators," Amer. Math. Soc, Providence, RI, 2010. |
[20] |
K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006. |
[21] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986. |
[22] |
J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.
doi: 10.1016/j.na.2010.09.061. |
[23] |
J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations, Discrete Contin. Dyn. Syst., 33 (2013), 2139-2154.
doi: 10.3934/dcds.2013.33.2139. |
[24] |
J. Wang and C. L. Tang, Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations, Boundary Value Probl., 2006 (2006), 1-12.
doi: 10.1155/BVP/2006/47275. |
[25] |
Z. Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire., 8 (1991), 43-57. |
[26] |
M. Willem, "Minimax Theorems," Birkhäser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[27] |
Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett., 23 (2010), 377-380.
doi: 10.1016/j.aml.2009.11.001. |
[28] |
Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
show all references
References:
[1] |
C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.
doi: 10.1016/j.camwa.2005.01.008. |
[2] |
T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419-441.
doi: 10.1016/0362-546X(95)00167-T. |
[3] |
G. Cerami, An existence criterion for the critical points on unbounded manifolds, (Italian) Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332-336. |
[4] |
K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems," Birkhäuser, Boston, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[5] |
C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations, 250 (2011), 1876-1908.
doi: 10.1016/j.jde.2010.11.017. |
[6] |
F. Fang and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations, J. Math Anal. Appl., 351 (2009), 138-146.
doi: 10.1016/j.jmaa.2008.09.064. |
[7] |
X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$, J. Differential Equations, 252 (2011), 1813-1834.
doi: 10.1016/j.jde.2011.08.035. |
[8] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.
doi: 10.1017/S0308210500013147. |
[9] |
Q. S. Jiu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian, J. Math. Anal.Appl., 281 (2003), 587-601.
doi: 10.1016/S0022-247X(03)00165-3. |
[10] |
G. B. Li and C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037. |
[11] |
C. G. Liu and Y. Q. Zheng, Linking solutions for $p$-Laplace equations with nonlinear boundary conditions and indefinite weight, Calc. Var. Partial Differential Equations, 41 (2011), 261-284.
doi: 10.1007/s00526-010-0361-z. |
[12] |
J. Q. Liu, The Morse index of a saddle point, Syst. Sci. Math. Sci., 2 (1989), 32-39. |
[13] |
J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems, J. Math. Anal. Appl., 258 (2001), 209-222.
doi: 10.1006/jmaa.2000.7374. |
[14] |
S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.
doi: 10.1016/j.na.2010.04.016. |
[15] |
S. B. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Mathematica Sinica, 46 (2003), 625-630 (Chinese). |
[16] |
T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett., 16 (2003), 243-248.
doi: 10.1016/S0893-9659(03)80038-1. |
[17] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287.
doi: 10.1016/j.na.2008.02.011. |
[18] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," in: Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[19] |
K. Perera, R. P. Agarwal and D. O'Regan, "Morse Theoretic Aspects of $p$-Laplacian Type Operators," Amer. Math. Soc, Providence, RI, 2010. |
[20] |
K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006. |
[21] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986. |
[22] |
J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.
doi: 10.1016/j.na.2010.09.061. |
[23] |
J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations, Discrete Contin. Dyn. Syst., 33 (2013), 2139-2154.
doi: 10.3934/dcds.2013.33.2139. |
[24] |
J. Wang and C. L. Tang, Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations, Boundary Value Probl., 2006 (2006), 1-12.
doi: 10.1155/BVP/2006/47275. |
[25] |
Z. Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire., 8 (1991), 43-57. |
[26] |
M. Willem, "Minimax Theorems," Birkhäser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[27] |
Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett., 23 (2010), 377-380.
doi: 10.1016/j.aml.2009.11.001. |
[28] |
Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
[1] |
Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure and Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008 |
[2] |
Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483 |
[3] |
M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703 |
[4] |
Thomas Bartsch, Anna Maria Micheletti, Angela Pistoia. The Morse property for functions of Kirchhoff-Routh path type. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1867-1877. doi: 10.3934/dcdss.2019123 |
[5] |
Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139 |
[6] |
Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721 |
[7] |
Philip Schrader. Morse theory for elastica. Journal of Geometric Mechanics, 2016, 8 (2) : 235-256. doi: 10.3934/jgm.2016006 |
[8] |
Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 |
[9] |
Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 |
[10] |
Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124 |
[11] |
Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079 |
[12] |
Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 |
[13] |
Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126 |
[14] |
Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027 |
[15] |
Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078 |
[16] |
Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080 |
[17] |
Wenguo Shen. Unilateral global interval bifurcation for Kirchhoff type problems and its applications. Communications on Pure and Applied Analysis, 2018, 17 (1) : 21-37. doi: 10.3934/cpaa.2018002 |
[18] |
Edcarlos D. Silva, Jefferson S. Silva. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5441-5470. doi: 10.3934/dcds.2020234 |
[19] |
Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841 |
[20] |
Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1927-1954. doi: 10.3934/dcdsb.2021115 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]