March  2014, 13(2): 483-494. doi: 10.3934/cpaa.2014.13.483

Nontrivial solutions for Kirchhoff type equations via Morse theory

1. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received  March 2012 Revised  August 2013 Published  October 2013

In this paper, the existence of nontrivial solutions is obtained for a class of Kirchhoff type problems with Dirichlet boundary conditions by computing the critical groups and Morse theory.
Citation: Jijiang Sun, Shiwang Ma. Nontrivial solutions for Kirchhoff type equations via Morse theory. Communications on Pure & Applied Analysis, 2014, 13 (2) : 483-494. doi: 10.3934/cpaa.2014.13.483
References:
[1]

C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar

[2]

T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419.  doi: 10.1016/0362-546X(95)00167-T.  Google Scholar

[3]

G. Cerami, An existence criterion for the critical points on unbounded manifolds, (Italian), Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332.   Google Scholar

[4]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).  doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[5]

C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876.  doi: 10.1016/j.jde.2010.11.017.  Google Scholar

[6]

F. Fang and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations,, J. Math Anal. Appl., 351 (2009), 138.  doi: 10.1016/j.jmaa.2008.09.064.  Google Scholar

[7]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$,, J. Differential Equations, 252 (2011), 1813.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[8]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787.  doi: 10.1017/S0308210500013147.  Google Scholar

[9]

Q. S. Jiu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, J. Math. Anal.Appl., 281 (2003), 587.  doi: 10.1016/S0022-247X(03)00165-3.  Google Scholar

[10]

G. B. Li and C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.  doi: 10.1016/j.na.2010.02.037.  Google Scholar

[11]

C. G. Liu and Y. Q. Zheng, Linking solutions for $p$-Laplace equations with nonlinear boundary conditions and indefinite weight,, Calc. Var. Partial Differential Equations, 41 (2011), 261.  doi: 10.1007/s00526-010-0361-z.  Google Scholar

[12]

J. Q. Liu, The Morse index of a saddle point,, Syst. Sci. Math. Sci., 2 (1989), 32.   Google Scholar

[13]

J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems,, J. Math. Anal. Appl., 258 (2001), 209.  doi: 10.1006/jmaa.2000.7374.  Google Scholar

[14]

S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition,, Nonlinear Anal., 73 (2010), 788.  doi: 10.1016/j.na.2010.04.016.  Google Scholar

[15]

S. B. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation,, Acta Mathematica Sinica, 46 (2003), 625.   Google Scholar

[16]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243.  doi: 10.1016/S0893-9659(03)80038-1.  Google Scholar

[17]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275.  doi: 10.1016/j.na.2008.02.011.  Google Scholar

[18]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[19]

K. Perera, R. P. Agarwal and D. O'Regan, "Morse Theoretic Aspects of $p$-Laplacian Type Operators,", Amer. Math. Soc, (2010).   Google Scholar

[20]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[21]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986).   Google Scholar

[22]

J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212.  doi: 10.1016/j.na.2010.09.061.  Google Scholar

[23]

J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2139.  doi: 10.3934/dcds.2013.33.2139.  Google Scholar

[24]

J. Wang and C. L. Tang, Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations,, Boundary Value Probl., 2006 (2006), 1.  doi: 10.1155/BVP/2006/47275.  Google Scholar

[25]

Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire., 8 (1991), 43.   Google Scholar

[26]

M. Willem, "Minimax Theorems,", Birkh\, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[27]

Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory,, Appl. Math. Lett., 23 (2010), 377.  doi: 10.1016/j.aml.2009.11.001.  Google Scholar

[28]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

show all references

References:
[1]

C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar

[2]

T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419.  doi: 10.1016/0362-546X(95)00167-T.  Google Scholar

[3]

G. Cerami, An existence criterion for the critical points on unbounded manifolds, (Italian), Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332.   Google Scholar

[4]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).  doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[5]

C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876.  doi: 10.1016/j.jde.2010.11.017.  Google Scholar

[6]

F. Fang and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations,, J. Math Anal. Appl., 351 (2009), 138.  doi: 10.1016/j.jmaa.2008.09.064.  Google Scholar

[7]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$,, J. Differential Equations, 252 (2011), 1813.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[8]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787.  doi: 10.1017/S0308210500013147.  Google Scholar

[9]

Q. S. Jiu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, J. Math. Anal.Appl., 281 (2003), 587.  doi: 10.1016/S0022-247X(03)00165-3.  Google Scholar

[10]

G. B. Li and C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.  doi: 10.1016/j.na.2010.02.037.  Google Scholar

[11]

C. G. Liu and Y. Q. Zheng, Linking solutions for $p$-Laplace equations with nonlinear boundary conditions and indefinite weight,, Calc. Var. Partial Differential Equations, 41 (2011), 261.  doi: 10.1007/s00526-010-0361-z.  Google Scholar

[12]

J. Q. Liu, The Morse index of a saddle point,, Syst. Sci. Math. Sci., 2 (1989), 32.   Google Scholar

[13]

J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems,, J. Math. Anal. Appl., 258 (2001), 209.  doi: 10.1006/jmaa.2000.7374.  Google Scholar

[14]

S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition,, Nonlinear Anal., 73 (2010), 788.  doi: 10.1016/j.na.2010.04.016.  Google Scholar

[15]

S. B. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation,, Acta Mathematica Sinica, 46 (2003), 625.   Google Scholar

[16]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243.  doi: 10.1016/S0893-9659(03)80038-1.  Google Scholar

[17]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275.  doi: 10.1016/j.na.2008.02.011.  Google Scholar

[18]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[19]

K. Perera, R. P. Agarwal and D. O'Regan, "Morse Theoretic Aspects of $p$-Laplacian Type Operators,", Amer. Math. Soc, (2010).   Google Scholar

[20]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[21]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986).   Google Scholar

[22]

J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212.  doi: 10.1016/j.na.2010.09.061.  Google Scholar

[23]

J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2139.  doi: 10.3934/dcds.2013.33.2139.  Google Scholar

[24]

J. Wang and C. L. Tang, Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations,, Boundary Value Probl., 2006 (2006), 1.  doi: 10.1155/BVP/2006/47275.  Google Scholar

[25]

Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire., 8 (1991), 43.   Google Scholar

[26]

M. Willem, "Minimax Theorems,", Birkh\, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[27]

Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory,, Appl. Math. Lett., 23 (2010), 377.  doi: 10.1016/j.aml.2009.11.001.  Google Scholar

[28]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

[1]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[2]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[3]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[4]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[5]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[6]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[7]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[8]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[9]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[10]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[11]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[12]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[13]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[14]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[15]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[16]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[17]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[18]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[19]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[20]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]