-
Previous Article
Schrödinger-like operators and the eikonal equation
- CPAA Home
- This Issue
- Next Article
Nontrivial solutions for Kirchhoff type equations via Morse theory
1. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
References:
[1] |
C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85.
doi: 10.1016/j.camwa.2005.01.008. |
[2] |
T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419.
doi: 10.1016/0362-546X(95)00167-T. |
[3] |
G. Cerami, An existence criterion for the critical points on unbounded manifolds, (Italian), Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332.
|
[4] |
K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).
doi: 10.1007/978-1-4612-0385-8. |
[5] |
C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876.
doi: 10.1016/j.jde.2010.11.017. |
[6] |
F. Fang and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations,, J. Math Anal. Appl., 351 (2009), 138.
doi: 10.1016/j.jmaa.2008.09.064. |
[7] |
X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$,, J. Differential Equations, 252 (2011), 1813.
doi: 10.1016/j.jde.2011.08.035. |
[8] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787.
doi: 10.1017/S0308210500013147. |
[9] |
Q. S. Jiu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, J. Math. Anal.Appl., 281 (2003), 587.
doi: 10.1016/S0022-247X(03)00165-3. |
[10] |
G. B. Li and C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.
doi: 10.1016/j.na.2010.02.037. |
[11] |
C. G. Liu and Y. Q. Zheng, Linking solutions for $p$-Laplace equations with nonlinear boundary conditions and indefinite weight,, Calc. Var. Partial Differential Equations, 41 (2011), 261.
doi: 10.1007/s00526-010-0361-z. |
[12] |
J. Q. Liu, The Morse index of a saddle point,, Syst. Sci. Math. Sci., 2 (1989), 32.
|
[13] |
J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems,, J. Math. Anal. Appl., 258 (2001), 209.
doi: 10.1006/jmaa.2000.7374. |
[14] |
S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition,, Nonlinear Anal., 73 (2010), 788.
doi: 10.1016/j.na.2010.04.016. |
[15] |
S. B. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation,, Acta Mathematica Sinica, 46 (2003), 625.
|
[16] |
T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243.
doi: 10.1016/S0893-9659(03)80038-1. |
[17] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275.
doi: 10.1016/j.na.2008.02.011. |
[18] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989).
doi: 10.1007/978-1-4757-2061-7. |
[19] |
K. Perera, R. P. Agarwal and D. O'Regan, "Morse Theoretic Aspects of $p$-Laplacian Type Operators,", Amer. Math. Soc, (2010).
|
[20] |
K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246.
doi: 10.1016/j.jde.2005.03.006. |
[21] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986).
|
[22] |
J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212.
doi: 10.1016/j.na.2010.09.061. |
[23] |
J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2139.
doi: 10.3934/dcds.2013.33.2139. |
[24] |
J. Wang and C. L. Tang, Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations,, Boundary Value Probl., 2006 (2006), 1.
doi: 10.1155/BVP/2006/47275. |
[25] |
Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire., 8 (1991), 43.
|
[26] |
M. Willem, "Minimax Theorems,", Birkh\, (1996).
doi: 10.1007/978-1-4612-4146-1. |
[27] |
Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory,, Appl. Math. Lett., 23 (2010), 377.
doi: 10.1016/j.aml.2009.11.001. |
[28] |
Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.
doi: 10.1016/j.jmaa.2005.06.102. |
show all references
References:
[1] |
C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85.
doi: 10.1016/j.camwa.2005.01.008. |
[2] |
T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419.
doi: 10.1016/0362-546X(95)00167-T. |
[3] |
G. Cerami, An existence criterion for the critical points on unbounded manifolds, (Italian), Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332.
|
[4] |
K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).
doi: 10.1007/978-1-4612-0385-8. |
[5] |
C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876.
doi: 10.1016/j.jde.2010.11.017. |
[6] |
F. Fang and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations,, J. Math Anal. Appl., 351 (2009), 138.
doi: 10.1016/j.jmaa.2008.09.064. |
[7] |
X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$,, J. Differential Equations, 252 (2011), 1813.
doi: 10.1016/j.jde.2011.08.035. |
[8] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787.
doi: 10.1017/S0308210500013147. |
[9] |
Q. S. Jiu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, J. Math. Anal.Appl., 281 (2003), 587.
doi: 10.1016/S0022-247X(03)00165-3. |
[10] |
G. B. Li and C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.
doi: 10.1016/j.na.2010.02.037. |
[11] |
C. G. Liu and Y. Q. Zheng, Linking solutions for $p$-Laplace equations with nonlinear boundary conditions and indefinite weight,, Calc. Var. Partial Differential Equations, 41 (2011), 261.
doi: 10.1007/s00526-010-0361-z. |
[12] |
J. Q. Liu, The Morse index of a saddle point,, Syst. Sci. Math. Sci., 2 (1989), 32.
|
[13] |
J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems,, J. Math. Anal. Appl., 258 (2001), 209.
doi: 10.1006/jmaa.2000.7374. |
[14] |
S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition,, Nonlinear Anal., 73 (2010), 788.
doi: 10.1016/j.na.2010.04.016. |
[15] |
S. B. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation,, Acta Mathematica Sinica, 46 (2003), 625.
|
[16] |
T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243.
doi: 10.1016/S0893-9659(03)80038-1. |
[17] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275.
doi: 10.1016/j.na.2008.02.011. |
[18] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989).
doi: 10.1007/978-1-4757-2061-7. |
[19] |
K. Perera, R. P. Agarwal and D. O'Regan, "Morse Theoretic Aspects of $p$-Laplacian Type Operators,", Amer. Math. Soc, (2010).
|
[20] |
K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246.
doi: 10.1016/j.jde.2005.03.006. |
[21] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986).
|
[22] |
J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212.
doi: 10.1016/j.na.2010.09.061. |
[23] |
J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2139.
doi: 10.3934/dcds.2013.33.2139. |
[24] |
J. Wang and C. L. Tang, Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations,, Boundary Value Probl., 2006 (2006), 1.
doi: 10.1155/BVP/2006/47275. |
[25] |
Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire., 8 (1991), 43.
|
[26] |
M. Willem, "Minimax Theorems,", Birkh\, (1996).
doi: 10.1007/978-1-4612-4146-1. |
[27] |
Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory,, Appl. Math. Lett., 23 (2010), 377.
doi: 10.1016/j.aml.2009.11.001. |
[28] |
Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.
doi: 10.1016/j.jmaa.2005.06.102. |
[1] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[2] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[3] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[4] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[5] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[6] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[7] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[8] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[9] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[10] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[11] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[12] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[13] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[14] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[15] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[16] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[17] |
Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151 |
[18] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[19] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[20] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]