Advanced Search
Article Contents
Article Contents

Nontrivial solutions for Kirchhoff type equations via Morse theory

Abstract Related Papers Cited by
  • In this paper, the existence of nontrivial solutions is obtained for a class of Kirchhoff type problems with Dirichlet boundary conditions by computing the critical groups and Morse theory.
    Mathematics Subject Classification: Primary: 35J60; Secondary: 58E05, 47J30, 35J20.


    \begin{equation} \\ \end{equation}
  • [1]

    C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.doi: 10.1016/j.camwa.2005.01.008.


    T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419-441.doi: 10.1016/0362-546X(95)00167-T.


    G. Cerami, An existence criterion for the critical points on unbounded manifolds, (Italian) Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332-336.


    K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems," Birkhäuser, Boston, 1993.doi: 10.1007/978-1-4612-0385-8.


    C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations, 250 (2011), 1876-1908.doi: 10.1016/j.jde.2010.11.017.


    F. Fang and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations, J. Math Anal. Appl., 351 (2009), 138-146.doi: 10.1016/j.jmaa.2008.09.064.


    X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$, J. Differential Equations, 252 (2011), 1813-1834.doi: 10.1016/j.jde.2011.08.035.


    L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.doi: 10.1017/S0308210500013147.


    Q. S. Jiu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian, J. Math. Anal.Appl., 281 (2003), 587-601.doi: 10.1016/S0022-247X(03)00165-3.


    G. B. Li and C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.doi: 10.1016/j.na.2010.02.037.


    C. G. Liu and Y. Q. Zheng, Linking solutions for $p$-Laplace equations with nonlinear boundary conditions and indefinite weight, Calc. Var. Partial Differential Equations, 41 (2011), 261-284.doi: 10.1007/s00526-010-0361-z.


    J. Q. Liu, The Morse index of a saddle point, Syst. Sci. Math. Sci., 2 (1989), 32-39.


    J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems, J. Math. Anal. Appl., 258 (2001), 209-222.doi: 10.1006/jmaa.2000.7374.


    S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.doi: 10.1016/j.na.2010.04.016.


    S. B. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Mathematica Sinica, 46 (2003), 625-630 (Chinese).


    T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett., 16 (2003), 243-248.doi: 10.1016/S0893-9659(03)80038-1.


    A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287.doi: 10.1016/j.na.2008.02.011.


    J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," in: Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4757-2061-7.


    K. Perera, R. P. Agarwal and D. O'Regan, "Morse Theoretic Aspects of $p$-Laplacian Type Operators," Amer. Math. Soc, Providence, RI, 2010.


    K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.doi: 10.1016/j.jde.2005.03.006.


    P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986.


    J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.doi: 10.1016/j.na.2010.09.061.


    J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations, Discrete Contin. Dyn. Syst., 33 (2013), 2139-2154.doi: 10.3934/dcds.2013.33.2139.


    J. Wang and C. L. Tang, Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations, Boundary Value Probl., 2006 (2006), 1-12.doi: 10.1155/BVP/2006/47275.


    Z. Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire., 8 (1991), 43-57.


    M. Willem, "Minimax Theorems," Birkhäser, Boston, 1996.doi: 10.1007/978-1-4612-4146-1.


    Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett., 23 (2010), 377-380.doi: 10.1016/j.aml.2009.11.001.


    Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.doi: 10.1016/j.jmaa.2005.06.102.

  • 加载中

Article Metrics

HTML views() PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint