March  2014, 13(2): 511-525. doi: 10.3934/cpaa.2014.13.511

Liouville type theorem to an integral system in the half-space

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China, China

2. 

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024

Received  July 2012 Revised  June 2013 Published  October 2013

In this paper, by using the moving plane method in integral forms, we establish a Liouville type theorem for a coupled integral system with Navier boundary values in the half-space. Furthermore, we prove that the Liouville type theorem is valid for the related differential system as well under an additional assumption by showing the equivalence between the involved differential and integral systems.
Citation: Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511
References:
[1]

I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217.  doi: 10.1017/S0308210500027293.  Google Scholar

[2]

T. Branson, Differential operators canonically associated to a conformal structure,, Math. Scand., 2 (1985), 293.   Google Scholar

[3]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, Discrete Contin. Dyn. Syst., 33 (2013), 3937.  doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[4]

L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $R^n_+$, , J. Math. Anal. Appl., 389 (2012), 1365.  doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[5]

W. Chen, C. Jin and C. Li, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, Discrete Contin. Dyn. Syst., suppl. (2005), 164.   Google Scholar

[6]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 949.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[7]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, {Commun. Pure Appl. Anal., 12 (2013), 2497.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[9]

W. Chen, C. Li and G. Wang, On the stationary solutions of the 2D Doi-Onsager model,, Nonlinear Anal., 73 (2010), 2410.  doi: 10.1016/j.na.2010.06.012.  Google Scholar

[10]

Z. Chen and Z. Zhao, Potential theory for elliptic systems,, Ann. Probab., 24 (1996), 293.  doi: 10.1214/aop/1042644718.  Google Scholar

[11]

Z. Djadli, A. Malchiodi and M. Almedou, Prescribing a fourth order conformal invariant on the standard sphere. II. Blow up analysis and applications,, Ann. Sc. Norm. Super. Pisa Cl. Sci., (2002), 387.   Google Scholar

[12]

P. Esposito and F. Robert, Mountain pass critical points for Paneitz-Branson operators,, Calc. Var. Partial Differential Equations, 15 (2002), 493.  doi: 10.1007/s005260100134.  Google Scholar

[13]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Adv. Math., 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[14]

D. G. de Figueiredo and P. Felmer, A Liouville-type theorem for elliptic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387.   Google Scholar

[15]

X. Huang, D. Li and L. Wang, Symmetry and monotonicity for integral equation systems,, Nonlinear Anal. Real World Appl., 12 (2011), 3515.  doi: 10.1016/j.nonrwa.2011.06.012.  Google Scholar

[16]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[17]

Y. Lei and C. Ma, Radial symmetry and decay rates of positive solutions of a wolff type integral system,, Proc. Amer. Math. Soc., 140 (2012), 541.  doi: 10.1090/S0002-9939-2011-11401-1.  Google Scholar

[18]

S. Lenhart and S. Belbas, A system of nonlinear partial differential equations arising in the optimal control of stochastic systems with switching costs,, SIAM J. Appl. Math., 43 (1983), 465.  doi: 10.1137/0143030.  Google Scholar

[19]

C. Li and L. Ma, Uniqueness of positive bound states to shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[20]

D. Li and R. Zhuo, An integral equation on half space,, Proc. Amer. Math. Soc., 138 (2010), 2779.  doi: 10.1090/S0002-9939-10-10368-2.  Google Scholar

[21]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbbR^n$,, J. Differential Equations, 225 (2006), 685.  doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[22]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Commun. Pure Appl. Anal., 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[23]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbbR^n$,, Differential Integral Equations, 9 (1996), 465.   Google Scholar

[24]

S. Nazarov and G. Sweers, A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners,, J. Differential Equations, 233 (2007), 151.  doi: 10.1016/j.jde.2006.09.018.  Google Scholar

[25]

L. Peletier, Nonlinear eigenvalue problems for higher-order model equations,, in, (2006).   Google Scholar

[26]

L. Peletier and W. Troy, "Spatial Patterns. Higher Order Models in Physics and Mechanics, Progress in Nonlinear Differential Equations and Their Applications. 45,", Birkhauser Boston, (2001).   Google Scholar

[27]

P. Peter, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems,, Duke Math. J., 139 (2007), 555.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[28]

W. Reichel and T. Weth, A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, Math. Z., 261 (2009), 805.  doi: 10.1007/s00209-008-0352-3.  Google Scholar

[29]

W. Reichel and T. Weth, Existence of solutions to nonlinear, subcritical higher order elliptic Dirichlet problems,, J. Differential Equations, 248 (2010), 1866.  doi: 10.1016/j.jde.2009.09.012.  Google Scholar

[30]

J. Serrin and H. Zou, Nonexistence of positive solutions of Lane-Emden systems,, Differential Integral Equations, 9 (1996), 635.   Google Scholar

[31]

B. Sirakov, Existence results and a priori bounds for higher order elliptic equations and systems,, J. Math. Pures Appl., 89 (2008), 114.  doi: 10.1016/j.matpur.2007.10.003.  Google Scholar

[32]

J.B. Van den Berg, The phase-plane picture for a class of fourth-order conservative differential equations,, J. Differential Equations, 161 (2000), 110.  doi: 10.1006/jdeq.1999.3698.  Google Scholar

[33]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1017/S0308210500027293.  Google Scholar

show all references

References:
[1]

I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217.  doi: 10.1017/S0308210500027293.  Google Scholar

[2]

T. Branson, Differential operators canonically associated to a conformal structure,, Math. Scand., 2 (1985), 293.   Google Scholar

[3]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, Discrete Contin. Dyn. Syst., 33 (2013), 3937.  doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[4]

L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $R^n_+$, , J. Math. Anal. Appl., 389 (2012), 1365.  doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[5]

W. Chen, C. Jin and C. Li, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, Discrete Contin. Dyn. Syst., suppl. (2005), 164.   Google Scholar

[6]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 949.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[7]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, {Commun. Pure Appl. Anal., 12 (2013), 2497.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[9]

W. Chen, C. Li and G. Wang, On the stationary solutions of the 2D Doi-Onsager model,, Nonlinear Anal., 73 (2010), 2410.  doi: 10.1016/j.na.2010.06.012.  Google Scholar

[10]

Z. Chen and Z. Zhao, Potential theory for elliptic systems,, Ann. Probab., 24 (1996), 293.  doi: 10.1214/aop/1042644718.  Google Scholar

[11]

Z. Djadli, A. Malchiodi and M. Almedou, Prescribing a fourth order conformal invariant on the standard sphere. II. Blow up analysis and applications,, Ann. Sc. Norm. Super. Pisa Cl. Sci., (2002), 387.   Google Scholar

[12]

P. Esposito and F. Robert, Mountain pass critical points for Paneitz-Branson operators,, Calc. Var. Partial Differential Equations, 15 (2002), 493.  doi: 10.1007/s005260100134.  Google Scholar

[13]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Adv. Math., 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[14]

D. G. de Figueiredo and P. Felmer, A Liouville-type theorem for elliptic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387.   Google Scholar

[15]

X. Huang, D. Li and L. Wang, Symmetry and monotonicity for integral equation systems,, Nonlinear Anal. Real World Appl., 12 (2011), 3515.  doi: 10.1016/j.nonrwa.2011.06.012.  Google Scholar

[16]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[17]

Y. Lei and C. Ma, Radial symmetry and decay rates of positive solutions of a wolff type integral system,, Proc. Amer. Math. Soc., 140 (2012), 541.  doi: 10.1090/S0002-9939-2011-11401-1.  Google Scholar

[18]

S. Lenhart and S. Belbas, A system of nonlinear partial differential equations arising in the optimal control of stochastic systems with switching costs,, SIAM J. Appl. Math., 43 (1983), 465.  doi: 10.1137/0143030.  Google Scholar

[19]

C. Li and L. Ma, Uniqueness of positive bound states to shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[20]

D. Li and R. Zhuo, An integral equation on half space,, Proc. Amer. Math. Soc., 138 (2010), 2779.  doi: 10.1090/S0002-9939-10-10368-2.  Google Scholar

[21]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbbR^n$,, J. Differential Equations, 225 (2006), 685.  doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[22]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Commun. Pure Appl. Anal., 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[23]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbbR^n$,, Differential Integral Equations, 9 (1996), 465.   Google Scholar

[24]

S. Nazarov and G. Sweers, A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners,, J. Differential Equations, 233 (2007), 151.  doi: 10.1016/j.jde.2006.09.018.  Google Scholar

[25]

L. Peletier, Nonlinear eigenvalue problems for higher-order model equations,, in, (2006).   Google Scholar

[26]

L. Peletier and W. Troy, "Spatial Patterns. Higher Order Models in Physics and Mechanics, Progress in Nonlinear Differential Equations and Their Applications. 45,", Birkhauser Boston, (2001).   Google Scholar

[27]

P. Peter, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems,, Duke Math. J., 139 (2007), 555.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[28]

W. Reichel and T. Weth, A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, Math. Z., 261 (2009), 805.  doi: 10.1007/s00209-008-0352-3.  Google Scholar

[29]

W. Reichel and T. Weth, Existence of solutions to nonlinear, subcritical higher order elliptic Dirichlet problems,, J. Differential Equations, 248 (2010), 1866.  doi: 10.1016/j.jde.2009.09.012.  Google Scholar

[30]

J. Serrin and H. Zou, Nonexistence of positive solutions of Lane-Emden systems,, Differential Integral Equations, 9 (1996), 635.   Google Scholar

[31]

B. Sirakov, Existence results and a priori bounds for higher order elliptic equations and systems,, J. Math. Pures Appl., 89 (2008), 114.  doi: 10.1016/j.matpur.2007.10.003.  Google Scholar

[32]

J.B. Van den Berg, The phase-plane picture for a class of fourth-order conservative differential equations,, J. Differential Equations, 161 (2000), 110.  doi: 10.1006/jdeq.1999.3698.  Google Scholar

[33]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1017/S0308210500027293.  Google Scholar

[1]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[2]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[3]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[4]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[5]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[6]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[7]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[8]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[9]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[12]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[13]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[14]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[15]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[16]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[17]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[18]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[19]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[20]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]