March  2014, 13(2): 527-542. doi: 10.3934/cpaa.2014.13.527

Well-posedness for the supercritical gKdV equation

1. 

Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, 33501 Bielefeld, Germany

Received  September 2012 Revised  July 2013 Published  October 2013

In this paper we consider the supercritical generalized Korteweg-de~Vries equation $\partial_t\psi + \partial_{x x x}\psi + \partial_x(|\psi|^{p-1}\psi) = 0$, where $5 \leq p \in R$. We prove a local well-posedness result in the homogeneous Besov space $\dot B_\infty^{s_p,2}(R)$, where $s_p=\frac12-\frac{2}{p-1}$ is the scaling critical index. In particular local well-posedness in the smaller inhomogeneous Sobolev space $H^{s_p}(R)$ can be proved similarly. As a byproduct a global well-posedness result for small initial data is also obtained.
Citation: Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527
References:
[1]

Jöran Bergh and Jörgen Löfström, "Interpolation Spaces. An Introduction",, Springer-Verlag, (1976).  doi: 10.1007/978-3-642-66451-9.  Google Scholar

[2]

Michael Christ, James E. Colliander and Terence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[3]

Luiz G. Farah, Felipe Linares and Ademir Pastor, The supercritical generalized KdV equation: global well-posedness in the energy space and below,, Math. Res. Lett., 18 (2011), 357.  doi: 10.4310/MRL.2011.v18.n2.a13.  Google Scholar

[4]

Axel Grünrock, A bilinear Airy-estimate with application to gKdV-3,, Differential Integral Equations, 18 (2005), 1333.   Google Scholar

[5]

Martin Hadac, Sebastian Herr and Herbert Koch, Well-posedness and scattering for the KP-II equation in a critical space,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 26 (2009), 917.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[6]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[7]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[8]

Herbert Koch and Jeremy L. Marzuola, Small data scattering and soliton stability in $\dot H^{-\frac16}$ for the quartic KdV Equation,, Anal. PDE, 5 (2012), 145.  doi: 10.2140/apde.2012.5.145.  Google Scholar

[9]

Herbert Koch and Daniel Tataru, Dispersive estimates for principally normal pseudodifferential operators,, Comm. Pure Appl. Math., 58 (2005), 217.  doi: 10.1002/cpa.20067.  Google Scholar

[10]

Herbert Koch and Daniel Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces,, Int. Math. Res. Not. IMRN, 2007 (2007).  doi: 10.1093/imrn/rnm053.  Google Scholar

[11]

Luc Molinet and Francis Ribaud, On the Cauchy problem for the generalized Korteweg-de Vries equation,, Comm. Partial Differential Equations, 28 (2003), 2065.  doi: 10.1081/PDE-120025496.  Google Scholar

[12]

Terence Tao, Scattering for the quartic generalised Korteweg-de Vries equation,, J. Differential Equations, 232 (2007), 623.  doi: 10.1016/j.jde.2006.07.019.  Google Scholar

[13]

Norbert Wiener, The quadratic variation of a function and its fourier coefficients.,, Journ. Math. Phys., 3 (1924), 72.   Google Scholar

show all references

References:
[1]

Jöran Bergh and Jörgen Löfström, "Interpolation Spaces. An Introduction",, Springer-Verlag, (1976).  doi: 10.1007/978-3-642-66451-9.  Google Scholar

[2]

Michael Christ, James E. Colliander and Terence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[3]

Luiz G. Farah, Felipe Linares and Ademir Pastor, The supercritical generalized KdV equation: global well-posedness in the energy space and below,, Math. Res. Lett., 18 (2011), 357.  doi: 10.4310/MRL.2011.v18.n2.a13.  Google Scholar

[4]

Axel Grünrock, A bilinear Airy-estimate with application to gKdV-3,, Differential Integral Equations, 18 (2005), 1333.   Google Scholar

[5]

Martin Hadac, Sebastian Herr and Herbert Koch, Well-posedness and scattering for the KP-II equation in a critical space,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 26 (2009), 917.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[6]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[7]

Carlos E. Kenig, Gustavo Ponce and Luis Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[8]

Herbert Koch and Jeremy L. Marzuola, Small data scattering and soliton stability in $\dot H^{-\frac16}$ for the quartic KdV Equation,, Anal. PDE, 5 (2012), 145.  doi: 10.2140/apde.2012.5.145.  Google Scholar

[9]

Herbert Koch and Daniel Tataru, Dispersive estimates for principally normal pseudodifferential operators,, Comm. Pure Appl. Math., 58 (2005), 217.  doi: 10.1002/cpa.20067.  Google Scholar

[10]

Herbert Koch and Daniel Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces,, Int. Math. Res. Not. IMRN, 2007 (2007).  doi: 10.1093/imrn/rnm053.  Google Scholar

[11]

Luc Molinet and Francis Ribaud, On the Cauchy problem for the generalized Korteweg-de Vries equation,, Comm. Partial Differential Equations, 28 (2003), 2065.  doi: 10.1081/PDE-120025496.  Google Scholar

[12]

Terence Tao, Scattering for the quartic generalised Korteweg-de Vries equation,, J. Differential Equations, 232 (2007), 623.  doi: 10.1016/j.jde.2006.07.019.  Google Scholar

[13]

Norbert Wiener, The quadratic variation of a function and its fourier coefficients.,, Journ. Math. Phys., 3 (1924), 72.   Google Scholar

[1]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[2]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[5]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[6]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[7]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[8]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[9]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[10]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[11]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[12]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[13]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[14]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[15]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[16]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[19]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]