March  2014, 13(2): 585-603. doi: 10.3934/cpaa.2014.13.585

Regularity criterion for 3D Navier-Stokes equations in Besov spaces

1. 

Department of Mathematics, Zhejiang University, Hangzhou 310027

2. 

Department of Mathematics, Zhejiang University, Hangzhou, 310027, China

Received  October 2012 Revised  July 2013 Published  October 2013

Several regularity criterions of Leray-Hopf weak solutions $u$ to the 3D Navier-Stokes equations are obtained. The results show that a weak solution $u$ becomes regular if the gradient of velocity component $\nabla_{h}{u}$ (or $ \nabla{u_3}$) satisfies the additional conditions in the class of $L^{q}(0,T; \dot{B}_{p,r}^{s}(\mathbb{R}^{3}))$, where $\nabla_{h}=(\partial_{x_{1}},\partial_{x_{2}})$ is the horizontal gradient operator. Besides, we also consider the anisotropic regularity criterion for the weak solution of Navier-Stokes equations in $\mathbb{R}^3$. Finally, we also get a further regularity criterion, when give the sufficient condition on $\partial_3u_3$.
Citation: Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585
References:
[1]

H. Bahouri, R. Danchin and J. Y. Chemin, "Fourier Analysis and Nonlinear Partial Differential Equations, A Series of Comprehensive Studies in Mathematics,'', Springer Heidelberg Dordrecht London New York. Springer-Verlag Berlin Heidelberg, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$,, Chinese Ann. Math. Ser. B, 16 (1995), 407.   Google Scholar

[3]

L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, Dierential Integral Equations, 15 (2002), 1129.   Google Scholar

[4]

C. S. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[5]

Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\mathbbR^3$,, J. Differential Equations, 216 (2005), 470.  doi: 10.1016/j.jde.2005.06.001.  Google Scholar

[6]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$,, \arXiv{0708.3067v2 [math.AP]}., ().   Google Scholar

[7]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations,'', Vol. I, (1994).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[8]

S. Gala, A remark on the blow-up criterion of strong solutions to the Navier-Stokes equations,, Applied Mathematics and Computation, 217 (2011), 9488.  doi: 10.1016/j.amc.2011.03.156.  Google Scholar

[9]

E. Hopf, Über die anfang swetaufgabe für die hydrodynamischer grundgleichungan,, Math. Nach., 4 (1951), 213.   Google Scholar

[10]

H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations,, Math. Z., 235 (2000), 173.  doi: 10.1007/s002090000130.  Google Scholar

[11]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[12]

H. Kozono and N. Yatsu, Extension criterion via two-components of vorticity on strong solution to the 3D Navier-Stokes equations,, Math. Z., 246 (2003), 55.  doi: 10.1007/s00209-003-0576-1.  Google Scholar

[13]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math Phys., 48 (2007).  doi: 10.1063/1.2395919.  Google Scholar

[14]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[15]

O. A. Ladyzhenskaya, "The Boundary Value Problems of Mathematical Physics,", Springer, (1985).   Google Scholar

[16]

J. Leray, Sur le mouvement d'um liquide visqieux emlissant l'space,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[17]

J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations,, In, (2001), 239.  doi: 10.1007/978-3-0348-8243-9_10.  Google Scholar

[18]

P. Penel and M. Pokorný, On anisotropic regularity criteria for the Solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341.  doi: 10.1007/s00021-010-0038-6.  Google Scholar

[19]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[20]

M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Differ. Equ., 11 (2003), 1.   Google Scholar

[21]

G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl. IV, 48 (1959), 173.   Google Scholar

[22]

J. Serrin, "The Initial Value Problems for the Navier-Stokes Equations, in Nonlinear Problems,", edited by R. E. Langer, (1963).   Google Scholar

[23]

H. Sohr, "The Navier-Stokes Equations, An Elementary Functional Analytic Approach,", Birkh$\ddot{\mboxa}$user Verlag, (2001).  doi: 10.1007/978-3-0348-0551-3.  Google Scholar

[24]

B. Q. Yuan and B. Zhang, Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices,, J. Differential Equations, 242 (2007), 1.  doi: 0.1016/j.jde.2007.07.009.  Google Scholar

[25]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

show all references

References:
[1]

H. Bahouri, R. Danchin and J. Y. Chemin, "Fourier Analysis and Nonlinear Partial Differential Equations, A Series of Comprehensive Studies in Mathematics,'', Springer Heidelberg Dordrecht London New York. Springer-Verlag Berlin Heidelberg, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$,, Chinese Ann. Math. Ser. B, 16 (1995), 407.   Google Scholar

[3]

L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, Dierential Integral Equations, 15 (2002), 1129.   Google Scholar

[4]

C. S. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[5]

Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\mathbbR^3$,, J. Differential Equations, 216 (2005), 470.  doi: 10.1016/j.jde.2005.06.001.  Google Scholar

[6]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$,, \arXiv{0708.3067v2 [math.AP]}., ().   Google Scholar

[7]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations,'', Vol. I, (1994).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[8]

S. Gala, A remark on the blow-up criterion of strong solutions to the Navier-Stokes equations,, Applied Mathematics and Computation, 217 (2011), 9488.  doi: 10.1016/j.amc.2011.03.156.  Google Scholar

[9]

E. Hopf, Über die anfang swetaufgabe für die hydrodynamischer grundgleichungan,, Math. Nach., 4 (1951), 213.   Google Scholar

[10]

H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations,, Math. Z., 235 (2000), 173.  doi: 10.1007/s002090000130.  Google Scholar

[11]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[12]

H. Kozono and N. Yatsu, Extension criterion via two-components of vorticity on strong solution to the 3D Navier-Stokes equations,, Math. Z., 246 (2003), 55.  doi: 10.1007/s00209-003-0576-1.  Google Scholar

[13]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math Phys., 48 (2007).  doi: 10.1063/1.2395919.  Google Scholar

[14]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[15]

O. A. Ladyzhenskaya, "The Boundary Value Problems of Mathematical Physics,", Springer, (1985).   Google Scholar

[16]

J. Leray, Sur le mouvement d'um liquide visqieux emlissant l'space,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[17]

J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations,, In, (2001), 239.  doi: 10.1007/978-3-0348-8243-9_10.  Google Scholar

[18]

P. Penel and M. Pokorný, On anisotropic regularity criteria for the Solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341.  doi: 10.1007/s00021-010-0038-6.  Google Scholar

[19]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483.  doi: 10.1023/B:APOM.0000048124.64244.7e.  Google Scholar

[20]

M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Differ. Equ., 11 (2003), 1.   Google Scholar

[21]

G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl. IV, 48 (1959), 173.   Google Scholar

[22]

J. Serrin, "The Initial Value Problems for the Navier-Stokes Equations, in Nonlinear Problems,", edited by R. E. Langer, (1963).   Google Scholar

[23]

H. Sohr, "The Navier-Stokes Equations, An Elementary Functional Analytic Approach,", Birkh$\ddot{\mboxa}$user Verlag, (2001).  doi: 10.1007/978-3-0348-0551-3.  Google Scholar

[24]

B. Q. Yuan and B. Zhang, Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices,, J. Differential Equations, 242 (2007), 1.  doi: 0.1016/j.jde.2007.07.009.  Google Scholar

[25]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[3]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[4]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[5]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[6]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[7]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[8]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[9]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[10]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[11]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[12]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[13]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[16]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[17]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[18]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[19]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[20]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]