-
Previous Article
Well-posedness of abstract distributed-order fractional diffusion equations
- CPAA Home
- This Issue
-
Next Article
Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent
Regularity criterion for 3D Navier-Stokes equations in Besov spaces
1. | Department of Mathematics, Zhejiang University, Hangzhou 310027 |
2. | Department of Mathematics, Zhejiang University, Hangzhou, 310027, China |
References:
[1] |
H. Bahouri, R. Danchin and J. Y. Chemin, "Fourier Analysis and Nonlinear Partial Differential Equations, A Series of Comprehensive Studies in Mathematics,'', Springer Heidelberg Dordrecht London New York. Springer-Verlag Berlin Heidelberg, (2011).
doi: 10.1007/978-3-642-16830-7. |
[2] |
H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$,, Chinese Ann. Math. Ser. B, 16 (1995), 407.
|
[3] |
L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, Dierential Integral Equations, 15 (2002), 1129.
|
[4] |
C. S. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919.
doi: 10.1007/s00205-011-0439-6. |
[5] |
Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\mathbbR^3$,, J. Differential Equations, 216 (2005), 470.
doi: 10.1016/j.jde.2005.06.001. |
[6] |
A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$,, \arXiv{0708.3067v2 [math.AP]}., (). Google Scholar |
[7] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations,'', Vol. I, (1994).
doi: 10.1007/978-0-387-09620-9. |
[8] |
S. Gala, A remark on the blow-up criterion of strong solutions to the Navier-Stokes equations,, Applied Mathematics and Computation, 217 (2011), 9488.
doi: 10.1016/j.amc.2011.03.156. |
[9] |
E. Hopf, Über die anfang swetaufgabe für die hydrodynamischer grundgleichungan,, Math. Nach., 4 (1951), 213. Google Scholar |
[10] |
H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations,, Math. Z., 235 (2000), 173.
doi: 10.1007/s002090000130. |
[11] |
H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.
doi: 10.1007/s002090100332. |
[12] |
H. Kozono and N. Yatsu, Extension criterion via two-components of vorticity on strong solution to the 3D Navier-Stokes equations,, Math. Z., 246 (2003), 55.
doi: 10.1007/s00209-003-0576-1. |
[13] |
I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math Phys., 48 (2007).
doi: 10.1063/1.2395919. |
[14] |
I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.
doi: 10.1088/0951-7715/19/2/012. |
[15] |
O. A. Ladyzhenskaya, "The Boundary Value Problems of Mathematical Physics,", Springer, (1985). Google Scholar |
[16] |
J. Leray, Sur le mouvement d'um liquide visqieux emlissant l'space,, Acta Math., 63 (1934), 193.
doi: 10.1007/BF02547354. |
[17] |
J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations,, In, (2001), 239.
doi: 10.1007/978-3-0348-8243-9_10. |
[18] |
P. Penel and M. Pokorný, On anisotropic regularity criteria for the Solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341.
doi: 10.1007/s00021-010-0038-6. |
[19] |
P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483.
doi: 10.1023/B:APOM.0000048124.64244.7e. |
[20] |
M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Differ. Equ., 11 (2003), 1. Google Scholar |
[21] |
G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl. IV, 48 (1959), 173. Google Scholar |
[22] |
J. Serrin, "The Initial Value Problems for the Navier-Stokes Equations, in Nonlinear Problems,", edited by R. E. Langer, (1963). Google Scholar |
[23] |
H. Sohr, "The Navier-Stokes Equations, An Elementary Functional Analytic Approach,", Birkh$\ddot{\mboxa}$user Verlag, (2001).
doi: 10.1007/978-3-0348-0551-3. |
[24] |
B. Q. Yuan and B. Zhang, Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices,, J. Differential Equations, 242 (2007), 1.
doi: 0.1016/j.jde.2007.07.009. |
[25] |
Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.
doi: 10.1088/0951-7715/23/5/004. |
show all references
References:
[1] |
H. Bahouri, R. Danchin and J. Y. Chemin, "Fourier Analysis and Nonlinear Partial Differential Equations, A Series of Comprehensive Studies in Mathematics,'', Springer Heidelberg Dordrecht London New York. Springer-Verlag Berlin Heidelberg, (2011).
doi: 10.1007/978-3-642-16830-7. |
[2] |
H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$,, Chinese Ann. Math. Ser. B, 16 (1995), 407.
|
[3] |
L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, Dierential Integral Equations, 15 (2002), 1129.
|
[4] |
C. S. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919.
doi: 10.1007/s00205-011-0439-6. |
[5] |
Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\mathbbR^3$,, J. Differential Equations, 216 (2005), 470.
doi: 10.1016/j.jde.2005.06.001. |
[6] |
A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$,, \arXiv{0708.3067v2 [math.AP]}., (). Google Scholar |
[7] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations,'', Vol. I, (1994).
doi: 10.1007/978-0-387-09620-9. |
[8] |
S. Gala, A remark on the blow-up criterion of strong solutions to the Navier-Stokes equations,, Applied Mathematics and Computation, 217 (2011), 9488.
doi: 10.1016/j.amc.2011.03.156. |
[9] |
E. Hopf, Über die anfang swetaufgabe für die hydrodynamischer grundgleichungan,, Math. Nach., 4 (1951), 213. Google Scholar |
[10] |
H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations,, Math. Z., 235 (2000), 173.
doi: 10.1007/s002090000130. |
[11] |
H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.
doi: 10.1007/s002090100332. |
[12] |
H. Kozono and N. Yatsu, Extension criterion via two-components of vorticity on strong solution to the 3D Navier-Stokes equations,, Math. Z., 246 (2003), 55.
doi: 10.1007/s00209-003-0576-1. |
[13] |
I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math Phys., 48 (2007).
doi: 10.1063/1.2395919. |
[14] |
I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.
doi: 10.1088/0951-7715/19/2/012. |
[15] |
O. A. Ladyzhenskaya, "The Boundary Value Problems of Mathematical Physics,", Springer, (1985). Google Scholar |
[16] |
J. Leray, Sur le mouvement d'um liquide visqieux emlissant l'space,, Acta Math., 63 (1934), 193.
doi: 10.1007/BF02547354. |
[17] |
J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations,, In, (2001), 239.
doi: 10.1007/978-3-0348-8243-9_10. |
[18] |
P. Penel and M. Pokorný, On anisotropic regularity criteria for the Solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341.
doi: 10.1007/s00021-010-0038-6. |
[19] |
P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483.
doi: 10.1023/B:APOM.0000048124.64244.7e. |
[20] |
M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Differ. Equ., 11 (2003), 1. Google Scholar |
[21] |
G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl. IV, 48 (1959), 173. Google Scholar |
[22] |
J. Serrin, "The Initial Value Problems for the Navier-Stokes Equations, in Nonlinear Problems,", edited by R. E. Langer, (1963). Google Scholar |
[23] |
H. Sohr, "The Navier-Stokes Equations, An Elementary Functional Analytic Approach,", Birkh$\ddot{\mboxa}$user Verlag, (2001).
doi: 10.1007/978-3-0348-0551-3. |
[24] |
B. Q. Yuan and B. Zhang, Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices,, J. Differential Equations, 242 (2007), 1.
doi: 0.1016/j.jde.2007.07.009. |
[25] |
Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.
doi: 10.1088/0951-7715/23/5/004. |
[1] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[2] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[3] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[4] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[5] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[6] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[9] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[10] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[11] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[12] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[13] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[14] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[15] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[16] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[17] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[18] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[19] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[20] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]