March  2014, 13(2): 605-621. doi: 10.3934/cpaa.2014.13.605

Well-posedness of abstract distributed-order fractional diffusion equations

1. 

School of Mathematics and Statistics, Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China, China, China

Received  December 2012 Revised  August 2013 Published  October 2013

In this paper, based on distributed-order fractional diffusion equation we propose the distributed-order fractional abstract Cauchy problem (DFACP) and study the well-posedness of DFACP. Using functional calculus technique, we prove that the general distributed-order fractional operator generates a bounded analytic $\alpha$-times resolvent operator family or a $C_0$-semigroup under some suitable conditions. In addition, we reveal the relation between two $\alpha$-times resolvent families generated by the sectorial operator $A$ and the special distributed-order fractional operator, $p_1A^{\beta_1}+ p_2A^{\beta_2}+\ldots +p_nA^{\beta_n}$, respectively.
Citation: Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605
References:
[1]

D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge University Press, (2004).  doi: 10.1017/CBO9780511755323.  Google Scholar

[2]

R. Balescu, Anomalous transport in turbulent plasmas and continuous time random walks,, Phys. Rev. E, 51 (1995), 4807.  doi: 10.1103/PhysRevE.51.4807.  Google Scholar

[3]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", Ph.D thesis, (2001).   Google Scholar

[4]

Alfred. S. Carasso and T. Kato, On subordinated holomorphic semigroups,, Trans. Amer. Math. Soc., 327 (1991), 867.  doi: 10.1090/S0002-9947-1991-1018572-4.  Google Scholar

[5]

Aleksei. V. Chechkin, R. Gorenflo and Igor. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.046129.  Google Scholar

[6]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators,, Math. Z., 196 (1987), 189.  doi: 10.1007/BF01163654.  Google Scholar

[8]

N. Dungey, Asymptotic type for sectorial operators and an integral of fractional powers,, J. Func. Anal., 256 (2009), 1387.  doi: 10.1016/j.jfa.2008.07.020.  Google Scholar

[9]

A. Einstein, "Investigations on the Theory of the Brownian Movement,", Dover Publications Inc., (1956).   Google Scholar

[10]

R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes,, Fract. Calc. Appl. Anal., 1 (1998), 167.   Google Scholar

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1966).  doi: 10.1007/978-3-642-53393-8.  Google Scholar

[12]

A. Klemm, Hans. P. Müller and R. Kimmich, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects,, Phys. Rev. E, 55 (1997), 4413.  doi: 10.1103/PhysRevE.55.4413.  Google Scholar

[13]

M. Haase, "The Functional Calculus for Sectorial Operators,", Operator Theory: Advances and Applications, (2006).  doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families,, J. Func. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[15]

K. Li and J. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations,, Comput. Math. Appl., 63 (2011), 1398.  doi: 10.1016/j.camwa.2011.02.038.  Google Scholar

[16]

F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order,, Appl. Math. Comput., 187 (2007), 295.  doi: 10.1016/j.amc.2006.08.126.  Google Scholar

[17]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Fract. Calc. Appl. Anal., 4 (2001), 153.   Google Scholar

[18]

Rosario. N. Mantegna and Harry. E. Stanley, Stochastic process with ultraslow convergence to a gaussian: the truncated Levy flight,, Phys. Rev. Lett., 73 (1994), 2946.  doi: 10.1103/PhysRevLett.73.2946.  Google Scholar

[19]

Celso. M. Carracedo and Miguel. S. Alix, "The Theory of Fractional Powers of Operators,", North-Holland Publishing Co., (2001).   Google Scholar

[20]

Mark. M. Meerschaert and Hans. P. Scheffler, Stochastic model for ultraslow diffusion,, Stoch. Proc. Appl., 116 (2006), 1215.  doi: 10.1016/j.spa.2006.01.006.  Google Scholar

[21]

Mark. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains,, J. Math. Anal. Appl., 379 (2011), 216.  doi: 10.1016/j.jmaa.2010.12.056.  Google Scholar

[22]

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[23]

Elliott. W. Montroll and George. H. Weiss, Random walks on lattices. II,, J. Math. Phys., 167 (1965), 167.  doi: 10.1063/1.1704269.  Google Scholar

[24]

M. Naber, Distributed order fractional subdiffusion,, Fractals, 12 (2004), 23.  doi: 10.1142/S0218348X04002410.  Google Scholar

[25]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[26]

J. Pr$\ddotu$ss, "Evolutionary Integral Equations and Applications,", Birkh\, (1993).  doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[27]

Lewis. F. Richardson, Atmospheric diffusion shown on a distance-neighbout graph,, Proc. Roy. Soc., 110 (1926), 709.  doi: 10.1098/rspa.1926.0043.  Google Scholar

[28]

Yakov. G. Sinai, The limiting behaviour of a one-dimensional random walk in a random medium,, Theor. Prob. Appl., 27 (1982), 256.  doi: 10.1137/1127028.  Google Scholar

[29]

Igor. M. Sokolov, Aleksei. V. Chechkin and J. Klafter, Distributed-order fractional kinetics,, Acta Phys. Polon., 35 (2004), 1323.   Google Scholar

[30]

G. Zumofen and J. Klafter, Spectral random walk of a single molecule,, Chem. Phys. Lett., 219 (1994), 303.  doi: 10.1016/0009-2614(94)87062-4.  Google Scholar

show all references

References:
[1]

D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge University Press, (2004).  doi: 10.1017/CBO9780511755323.  Google Scholar

[2]

R. Balescu, Anomalous transport in turbulent plasmas and continuous time random walks,, Phys. Rev. E, 51 (1995), 4807.  doi: 10.1103/PhysRevE.51.4807.  Google Scholar

[3]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", Ph.D thesis, (2001).   Google Scholar

[4]

Alfred. S. Carasso and T. Kato, On subordinated holomorphic semigroups,, Trans. Amer. Math. Soc., 327 (1991), 867.  doi: 10.1090/S0002-9947-1991-1018572-4.  Google Scholar

[5]

Aleksei. V. Chechkin, R. Gorenflo and Igor. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.046129.  Google Scholar

[6]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators,, Math. Z., 196 (1987), 189.  doi: 10.1007/BF01163654.  Google Scholar

[8]

N. Dungey, Asymptotic type for sectorial operators and an integral of fractional powers,, J. Func. Anal., 256 (2009), 1387.  doi: 10.1016/j.jfa.2008.07.020.  Google Scholar

[9]

A. Einstein, "Investigations on the Theory of the Brownian Movement,", Dover Publications Inc., (1956).   Google Scholar

[10]

R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes,, Fract. Calc. Appl. Anal., 1 (1998), 167.   Google Scholar

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1966).  doi: 10.1007/978-3-642-53393-8.  Google Scholar

[12]

A. Klemm, Hans. P. Müller and R. Kimmich, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects,, Phys. Rev. E, 55 (1997), 4413.  doi: 10.1103/PhysRevE.55.4413.  Google Scholar

[13]

M. Haase, "The Functional Calculus for Sectorial Operators,", Operator Theory: Advances and Applications, (2006).  doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families,, J. Func. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[15]

K. Li and J. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations,, Comput. Math. Appl., 63 (2011), 1398.  doi: 10.1016/j.camwa.2011.02.038.  Google Scholar

[16]

F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order,, Appl. Math. Comput., 187 (2007), 295.  doi: 10.1016/j.amc.2006.08.126.  Google Scholar

[17]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Fract. Calc. Appl. Anal., 4 (2001), 153.   Google Scholar

[18]

Rosario. N. Mantegna and Harry. E. Stanley, Stochastic process with ultraslow convergence to a gaussian: the truncated Levy flight,, Phys. Rev. Lett., 73 (1994), 2946.  doi: 10.1103/PhysRevLett.73.2946.  Google Scholar

[19]

Celso. M. Carracedo and Miguel. S. Alix, "The Theory of Fractional Powers of Operators,", North-Holland Publishing Co., (2001).   Google Scholar

[20]

Mark. M. Meerschaert and Hans. P. Scheffler, Stochastic model for ultraslow diffusion,, Stoch. Proc. Appl., 116 (2006), 1215.  doi: 10.1016/j.spa.2006.01.006.  Google Scholar

[21]

Mark. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains,, J. Math. Anal. Appl., 379 (2011), 216.  doi: 10.1016/j.jmaa.2010.12.056.  Google Scholar

[22]

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[23]

Elliott. W. Montroll and George. H. Weiss, Random walks on lattices. II,, J. Math. Phys., 167 (1965), 167.  doi: 10.1063/1.1704269.  Google Scholar

[24]

M. Naber, Distributed order fractional subdiffusion,, Fractals, 12 (2004), 23.  doi: 10.1142/S0218348X04002410.  Google Scholar

[25]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[26]

J. Pr$\ddotu$ss, "Evolutionary Integral Equations and Applications,", Birkh\, (1993).  doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[27]

Lewis. F. Richardson, Atmospheric diffusion shown on a distance-neighbout graph,, Proc. Roy. Soc., 110 (1926), 709.  doi: 10.1098/rspa.1926.0043.  Google Scholar

[28]

Yakov. G. Sinai, The limiting behaviour of a one-dimensional random walk in a random medium,, Theor. Prob. Appl., 27 (1982), 256.  doi: 10.1137/1127028.  Google Scholar

[29]

Igor. M. Sokolov, Aleksei. V. Chechkin and J. Klafter, Distributed-order fractional kinetics,, Acta Phys. Polon., 35 (2004), 1323.   Google Scholar

[30]

G. Zumofen and J. Klafter, Spectral random walk of a single molecule,, Chem. Phys. Lett., 219 (1994), 303.  doi: 10.1016/0009-2614(94)87062-4.  Google Scholar

[1]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[2]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[3]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[4]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[7]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[8]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[9]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[10]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[11]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[12]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[13]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[14]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[15]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[16]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[17]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[18]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[19]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[20]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]