March  2014, 13(2): 605-621. doi: 10.3934/cpaa.2014.13.605

Well-posedness of abstract distributed-order fractional diffusion equations

1. 

School of Mathematics and Statistics, Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China, China, China

Received  December 2012 Revised  August 2013 Published  October 2013

In this paper, based on distributed-order fractional diffusion equation we propose the distributed-order fractional abstract Cauchy problem (DFACP) and study the well-posedness of DFACP. Using functional calculus technique, we prove that the general distributed-order fractional operator generates a bounded analytic $\alpha$-times resolvent operator family or a $C_0$-semigroup under some suitable conditions. In addition, we reveal the relation between two $\alpha$-times resolvent families generated by the sectorial operator $A$ and the special distributed-order fractional operator, $p_1A^{\beta_1}+ p_2A^{\beta_2}+\ldots +p_nA^{\beta_n}$, respectively.
Citation: Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure and Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605
References:
[1]

D. Applebaum, "Lévy Processes and Stochastic Calculus," Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511755323.

[2]

R. Balescu, Anomalous transport in turbulent plasmas and continuous time random walks, Phys. Rev. E, 51 (1995), 4807-4822. doi: 10.1103/PhysRevE.51.4807.

[3]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces," Ph.D thesis, Eindhoven University of Technology, 2001.

[4]

Alfred. S. Carasso and T. Kato, On subordinated holomorphic semigroups, Trans. Amer. Math. Soc., 327 (1991), 867-878. doi: 10.1090/S0002-9947-1991-1018572-4.

[5]

Aleksei. V. Chechkin, R. Gorenflo and Igor. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 66 (2002), 046129. doi: 10.1103/PhysRevE.66.046129.

[6]

C. Chen and M. Li, On fractional resolvent operator functions, Semigroup Forum, 80 (2010), 121-142. doi: 10.1007/s00233-009-9184-7.

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. doi: 10.1007/BF01163654.

[8]

N. Dungey, Asymptotic type for sectorial operators and an integral of fractional powers, J. Func. Anal., 256 (2009), 1387-1407. doi: 10.1016/j.jfa.2008.07.020.

[9]

A. Einstein, "Investigations on the Theory of the Brownian Movement," Dover Publications Inc., New York, 1956.

[10]

R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes, Fract. Calc. Appl. Anal., 1 (1998), 167-191.

[11]

T. Kato, "Perturbation Theory for Linear Operators," Springer, Berlin, 1966. doi: 10.1007/978-3-642-53393-8.

[12]

A. Klemm, Hans. P. Müller and R. Kimmich, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects, Phys. Rev. E, 55 (1997), 4413-4422. doi: 10.1103/PhysRevE.55.4413.

[13]

M. Haase, "The Functional Calculus for Sectorial Operators," Operator Theory: Advances and Applications, Birkh$\ddota$uzer, 2006. doi: 10.1007/3-7643-7698-8.

[14]

M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families, J. Func. Anal., 259 (2010), 2702-2726. doi: 10.1016/j.jfa.2010.07.007.

[15]

K. Li and J. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations, Comput. Math. Appl., 63 (2011), 1398-1404. doi: 10.1016/j.camwa.2011.02.038.

[16]

F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order, Appl. Math. Comput., 187 (2007), 295-305. doi: 10.1016/j.amc.2006.08.126.

[17]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2001), 153-192.

[18]

Rosario. N. Mantegna and Harry. E. Stanley, Stochastic process with ultraslow convergence to a gaussian: the truncated Levy flight, Phys. Rev. Lett., 73 (1994), 2946-2949. doi: 10.1103/PhysRevLett.73.2946.

[19]

Celso. M. Carracedo and Miguel. S. Alix, "The Theory of Fractional Powers of Operators," North-Holland Publishing Co., Amsterdam, 2001.

[20]

Mark. M. Meerschaert and Hans. P. Scheffler, Stochastic model for ultraslow diffusion, Stoch. Proc. Appl., 116 (2006), 1215-1235. doi: 10.1016/j.spa.2006.01.006.

[21]

Mark. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl., 379 (2011), 216-228. doi: 10.1016/j.jmaa.2010.12.056.

[22]

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3.

[23]

Elliott. W. Montroll and George. H. Weiss, Random walks on lattices. II, J. Math. Phys., 167 (1965), 167-181. doi: 10.1063/1.1704269.

[24]

M. Naber, Distributed order fractional subdiffusion, Fractals, 12 (2004), 23-32. doi: 10.1142/S0218348X04002410.

[25]

I. Podlubny, "Fractional Differential Equations," Academic Press, New York, 1999.

[26]

J. Pr$\ddotu$ss, "Evolutionary Integral Equations and Applications," Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.

[27]

Lewis. F. Richardson, Atmospheric diffusion shown on a distance-neighbout graph, Proc. Roy. Soc., 110 (1926), 709-737. doi: 10.1098/rspa.1926.0043.

[28]

Yakov. G. Sinai, The limiting behaviour of a one-dimensional random walk in a random medium, Theor. Prob. Appl., 27 (1982), 256-268. doi: 10.1137/1127028.

[29]

Igor. M. Sokolov, Aleksei. V. Chechkin and J. Klafter, Distributed-order fractional kinetics, Acta Phys. Polon., 35 (2004), 1323-1341.

[30]

G. Zumofen and J. Klafter, Spectral random walk of a single molecule, Chem. Phys. Lett., 219 (1994), 303-309. doi: 10.1016/0009-2614(94)87062-4.

show all references

References:
[1]

D. Applebaum, "Lévy Processes and Stochastic Calculus," Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511755323.

[2]

R. Balescu, Anomalous transport in turbulent plasmas and continuous time random walks, Phys. Rev. E, 51 (1995), 4807-4822. doi: 10.1103/PhysRevE.51.4807.

[3]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces," Ph.D thesis, Eindhoven University of Technology, 2001.

[4]

Alfred. S. Carasso and T. Kato, On subordinated holomorphic semigroups, Trans. Amer. Math. Soc., 327 (1991), 867-878. doi: 10.1090/S0002-9947-1991-1018572-4.

[5]

Aleksei. V. Chechkin, R. Gorenflo and Igor. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 66 (2002), 046129. doi: 10.1103/PhysRevE.66.046129.

[6]

C. Chen and M. Li, On fractional resolvent operator functions, Semigroup Forum, 80 (2010), 121-142. doi: 10.1007/s00233-009-9184-7.

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. doi: 10.1007/BF01163654.

[8]

N. Dungey, Asymptotic type for sectorial operators and an integral of fractional powers, J. Func. Anal., 256 (2009), 1387-1407. doi: 10.1016/j.jfa.2008.07.020.

[9]

A. Einstein, "Investigations on the Theory of the Brownian Movement," Dover Publications Inc., New York, 1956.

[10]

R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes, Fract. Calc. Appl. Anal., 1 (1998), 167-191.

[11]

T. Kato, "Perturbation Theory for Linear Operators," Springer, Berlin, 1966. doi: 10.1007/978-3-642-53393-8.

[12]

A. Klemm, Hans. P. Müller and R. Kimmich, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects, Phys. Rev. E, 55 (1997), 4413-4422. doi: 10.1103/PhysRevE.55.4413.

[13]

M. Haase, "The Functional Calculus for Sectorial Operators," Operator Theory: Advances and Applications, Birkh$\ddota$uzer, 2006. doi: 10.1007/3-7643-7698-8.

[14]

M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families, J. Func. Anal., 259 (2010), 2702-2726. doi: 10.1016/j.jfa.2010.07.007.

[15]

K. Li and J. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations, Comput. Math. Appl., 63 (2011), 1398-1404. doi: 10.1016/j.camwa.2011.02.038.

[16]

F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order, Appl. Math. Comput., 187 (2007), 295-305. doi: 10.1016/j.amc.2006.08.126.

[17]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2001), 153-192.

[18]

Rosario. N. Mantegna and Harry. E. Stanley, Stochastic process with ultraslow convergence to a gaussian: the truncated Levy flight, Phys. Rev. Lett., 73 (1994), 2946-2949. doi: 10.1103/PhysRevLett.73.2946.

[19]

Celso. M. Carracedo and Miguel. S. Alix, "The Theory of Fractional Powers of Operators," North-Holland Publishing Co., Amsterdam, 2001.

[20]

Mark. M. Meerschaert and Hans. P. Scheffler, Stochastic model for ultraslow diffusion, Stoch. Proc. Appl., 116 (2006), 1215-1235. doi: 10.1016/j.spa.2006.01.006.

[21]

Mark. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl., 379 (2011), 216-228. doi: 10.1016/j.jmaa.2010.12.056.

[22]

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3.

[23]

Elliott. W. Montroll and George. H. Weiss, Random walks on lattices. II, J. Math. Phys., 167 (1965), 167-181. doi: 10.1063/1.1704269.

[24]

M. Naber, Distributed order fractional subdiffusion, Fractals, 12 (2004), 23-32. doi: 10.1142/S0218348X04002410.

[25]

I. Podlubny, "Fractional Differential Equations," Academic Press, New York, 1999.

[26]

J. Pr$\ddotu$ss, "Evolutionary Integral Equations and Applications," Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.

[27]

Lewis. F. Richardson, Atmospheric diffusion shown on a distance-neighbout graph, Proc. Roy. Soc., 110 (1926), 709-737. doi: 10.1098/rspa.1926.0043.

[28]

Yakov. G. Sinai, The limiting behaviour of a one-dimensional random walk in a random medium, Theor. Prob. Appl., 27 (1982), 256-268. doi: 10.1137/1127028.

[29]

Igor. M. Sokolov, Aleksei. V. Chechkin and J. Klafter, Distributed-order fractional kinetics, Acta Phys. Polon., 35 (2004), 1323-1341.

[30]

G. Zumofen and J. Klafter, Spectral random walk of a single molecule, Chem. Phys. Lett., 219 (1994), 303-309. doi: 10.1016/0009-2614(94)87062-4.

[1]

Li Li. An inverse problem for a fractional diffusion equation with fractional power type nonlinearities. Inverse Problems and Imaging, 2022, 16 (3) : 613-624. doi: 10.3934/ipi.2021064

[2]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[3]

Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023

[4]

Nguyen Huy Tuan, Donal O'Regan, Tran Bao Ngoc. Continuity with respect to fractional order of the time fractional diffusion-wave equation. Evolution Equations and Control Theory, 2020, 9 (3) : 773-793. doi: 10.3934/eect.2020033

[5]

Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations and Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077

[6]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[7]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[8]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[9]

Xuewei Cui, Mei Yu. Non-existence of positive solutions for a higher order fractional equation. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1379-1387. doi: 10.3934/dcds.2019059

[10]

Ruy Coimbra Charão, Juan Torres Espinoza, Ryo Ikehata. A second order fractional differential equation under effects of a super damping. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4433-4454. doi: 10.3934/cpaa.2020202

[11]

Ru-Yu Lai, Laurel Ohm. Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations. Inverse Problems and Imaging, 2022, 16 (2) : 305-323. doi: 10.3934/ipi.2021051

[12]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014

[13]

Matteo Cozzi. On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5769-5786. doi: 10.3934/dcds.2015.35.5769

[14]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[15]

Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192

[16]

Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3401-3417. doi: 10.3934/dcdss.2020423

[17]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 957-974. doi: 10.3934/dcdss.2020056

[18]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[19]

Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113

[20]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]