-
Previous Article
Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials
- CPAA Home
- This Issue
-
Next Article
Regularity criterion for 3D Navier-Stokes equations in Besov spaces
Well-posedness of abstract distributed-order fractional diffusion equations
1. | School of Mathematics and Statistics, Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China, China, China |
References:
[1] |
D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge University Press, (2004).
doi: 10.1017/CBO9780511755323. |
[2] |
R. Balescu, Anomalous transport in turbulent plasmas and continuous time random walks,, Phys. Rev. E, 51 (1995), 4807.
doi: 10.1103/PhysRevE.51.4807. |
[3] |
E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", Ph.D thesis, (2001).
|
[4] |
Alfred. S. Carasso and T. Kato, On subordinated holomorphic semigroups,, Trans. Amer. Math. Soc., 327 (1991), 867.
doi: 10.1090/S0002-9947-1991-1018572-4. |
[5] |
Aleksei. V. Chechkin, R. Gorenflo and Igor. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,, Phys. Rev. E, 66 (2002).
doi: 10.1103/PhysRevE.66.046129. |
[6] |
C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.
doi: 10.1007/s00233-009-9184-7. |
[7] |
G. Dore and A. Venni, On the closedness of the sum of two closed operators,, Math. Z., 196 (1987), 189.
doi: 10.1007/BF01163654. |
[8] |
N. Dungey, Asymptotic type for sectorial operators and an integral of fractional powers,, J. Func. Anal., 256 (2009), 1387.
doi: 10.1016/j.jfa.2008.07.020. |
[9] |
A. Einstein, "Investigations on the Theory of the Brownian Movement,", Dover Publications Inc., (1956).
|
[10] |
R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes,, Fract. Calc. Appl. Anal., 1 (1998), 167.
|
[11] |
T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1966).
doi: 10.1007/978-3-642-53393-8. |
[12] |
A. Klemm, Hans. P. Müller and R. Kimmich, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects,, Phys. Rev. E, 55 (1997), 4413.
doi: 10.1103/PhysRevE.55.4413. |
[13] |
M. Haase, "The Functional Calculus for Sectorial Operators,", Operator Theory: Advances and Applications, (2006).
doi: 10.1007/3-7643-7698-8. |
[14] |
M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families,, J. Func. Anal., 259 (2010), 2702.
doi: 10.1016/j.jfa.2010.07.007. |
[15] |
K. Li and J. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations,, Comput. Math. Appl., 63 (2011), 1398.
doi: 10.1016/j.camwa.2011.02.038. |
[16] |
F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order,, Appl. Math. Comput., 187 (2007), 295.
doi: 10.1016/j.amc.2006.08.126. |
[17] |
F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Fract. Calc. Appl. Anal., 4 (2001), 153.
|
[18] |
Rosario. N. Mantegna and Harry. E. Stanley, Stochastic process with ultraslow convergence to a gaussian: the truncated Levy flight,, Phys. Rev. Lett., 73 (1994), 2946.
doi: 10.1103/PhysRevLett.73.2946. |
[19] |
Celso. M. Carracedo and Miguel. S. Alix, "The Theory of Fractional Powers of Operators,", North-Holland Publishing Co., (2001).
|
[20] |
Mark. M. Meerschaert and Hans. P. Scheffler, Stochastic model for ultraslow diffusion,, Stoch. Proc. Appl., 116 (2006), 1215.
doi: 10.1016/j.spa.2006.01.006. |
[21] |
Mark. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains,, J. Math. Anal. Appl., 379 (2011), 216.
doi: 10.1016/j.jmaa.2010.12.056. |
[22] |
R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.
doi: 10.1016/S0370-1573(00)00070-3. |
[23] |
Elliott. W. Montroll and George. H. Weiss, Random walks on lattices. II,, J. Math. Phys., 167 (1965), 167.
doi: 10.1063/1.1704269. |
[24] |
M. Naber, Distributed order fractional subdiffusion,, Fractals, 12 (2004), 23.
doi: 10.1142/S0218348X04002410. |
[25] |
I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).
|
[26] |
J. Pr$\ddotu$ss, "Evolutionary Integral Equations and Applications,", Birkh\, (1993).
doi: 10.1007/978-3-0348-8570-6. |
[27] |
Lewis. F. Richardson, Atmospheric diffusion shown on a distance-neighbout graph,, Proc. Roy. Soc., 110 (1926), 709.
doi: 10.1098/rspa.1926.0043. |
[28] |
Yakov. G. Sinai, The limiting behaviour of a one-dimensional random walk in a random medium,, Theor. Prob. Appl., 27 (1982), 256.
doi: 10.1137/1127028. |
[29] |
Igor. M. Sokolov, Aleksei. V. Chechkin and J. Klafter, Distributed-order fractional kinetics,, Acta Phys. Polon., 35 (2004), 1323. Google Scholar |
[30] |
G. Zumofen and J. Klafter, Spectral random walk of a single molecule,, Chem. Phys. Lett., 219 (1994), 303.
doi: 10.1016/0009-2614(94)87062-4. |
show all references
References:
[1] |
D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge University Press, (2004).
doi: 10.1017/CBO9780511755323. |
[2] |
R. Balescu, Anomalous transport in turbulent plasmas and continuous time random walks,, Phys. Rev. E, 51 (1995), 4807.
doi: 10.1103/PhysRevE.51.4807. |
[3] |
E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", Ph.D thesis, (2001).
|
[4] |
Alfred. S. Carasso and T. Kato, On subordinated holomorphic semigroups,, Trans. Amer. Math. Soc., 327 (1991), 867.
doi: 10.1090/S0002-9947-1991-1018572-4. |
[5] |
Aleksei. V. Chechkin, R. Gorenflo and Igor. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,, Phys. Rev. E, 66 (2002).
doi: 10.1103/PhysRevE.66.046129. |
[6] |
C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.
doi: 10.1007/s00233-009-9184-7. |
[7] |
G. Dore and A. Venni, On the closedness of the sum of two closed operators,, Math. Z., 196 (1987), 189.
doi: 10.1007/BF01163654. |
[8] |
N. Dungey, Asymptotic type for sectorial operators and an integral of fractional powers,, J. Func. Anal., 256 (2009), 1387.
doi: 10.1016/j.jfa.2008.07.020. |
[9] |
A. Einstein, "Investigations on the Theory of the Brownian Movement,", Dover Publications Inc., (1956).
|
[10] |
R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes,, Fract. Calc. Appl. Anal., 1 (1998), 167.
|
[11] |
T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1966).
doi: 10.1007/978-3-642-53393-8. |
[12] |
A. Klemm, Hans. P. Müller and R. Kimmich, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects,, Phys. Rev. E, 55 (1997), 4413.
doi: 10.1103/PhysRevE.55.4413. |
[13] |
M. Haase, "The Functional Calculus for Sectorial Operators,", Operator Theory: Advances and Applications, (2006).
doi: 10.1007/3-7643-7698-8. |
[14] |
M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families,, J. Func. Anal., 259 (2010), 2702.
doi: 10.1016/j.jfa.2010.07.007. |
[15] |
K. Li and J. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations,, Comput. Math. Appl., 63 (2011), 1398.
doi: 10.1016/j.camwa.2011.02.038. |
[16] |
F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order,, Appl. Math. Comput., 187 (2007), 295.
doi: 10.1016/j.amc.2006.08.126. |
[17] |
F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Fract. Calc. Appl. Anal., 4 (2001), 153.
|
[18] |
Rosario. N. Mantegna and Harry. E. Stanley, Stochastic process with ultraslow convergence to a gaussian: the truncated Levy flight,, Phys. Rev. Lett., 73 (1994), 2946.
doi: 10.1103/PhysRevLett.73.2946. |
[19] |
Celso. M. Carracedo and Miguel. S. Alix, "The Theory of Fractional Powers of Operators,", North-Holland Publishing Co., (2001).
|
[20] |
Mark. M. Meerschaert and Hans. P. Scheffler, Stochastic model for ultraslow diffusion,, Stoch. Proc. Appl., 116 (2006), 1215.
doi: 10.1016/j.spa.2006.01.006. |
[21] |
Mark. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains,, J. Math. Anal. Appl., 379 (2011), 216.
doi: 10.1016/j.jmaa.2010.12.056. |
[22] |
R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.
doi: 10.1016/S0370-1573(00)00070-3. |
[23] |
Elliott. W. Montroll and George. H. Weiss, Random walks on lattices. II,, J. Math. Phys., 167 (1965), 167.
doi: 10.1063/1.1704269. |
[24] |
M. Naber, Distributed order fractional subdiffusion,, Fractals, 12 (2004), 23.
doi: 10.1142/S0218348X04002410. |
[25] |
I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).
|
[26] |
J. Pr$\ddotu$ss, "Evolutionary Integral Equations and Applications,", Birkh\, (1993).
doi: 10.1007/978-3-0348-8570-6. |
[27] |
Lewis. F. Richardson, Atmospheric diffusion shown on a distance-neighbout graph,, Proc. Roy. Soc., 110 (1926), 709.
doi: 10.1098/rspa.1926.0043. |
[28] |
Yakov. G. Sinai, The limiting behaviour of a one-dimensional random walk in a random medium,, Theor. Prob. Appl., 27 (1982), 256.
doi: 10.1137/1127028. |
[29] |
Igor. M. Sokolov, Aleksei. V. Chechkin and J. Klafter, Distributed-order fractional kinetics,, Acta Phys. Polon., 35 (2004), 1323. Google Scholar |
[30] |
G. Zumofen and J. Klafter, Spectral random walk of a single molecule,, Chem. Phys. Lett., 219 (1994), 303.
doi: 10.1016/0009-2614(94)87062-4. |
[1] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[2] |
Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849 |
[3] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[4] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[5] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[6] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[7] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[8] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[9] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[10] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[11] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[12] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[13] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[14] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[15] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[16] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[17] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[18] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[19] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[20] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]