• Previous Article
    A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Well-posedness of abstract distributed-order fractional diffusion equations
March  2014, 13(2): 623-634. doi: 10.3934/cpaa.2014.13.623

Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials

1. 

Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China

2. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875

Received  January 2013 Revised  April 2013 Published  October 2013

In this paper we investigate the existence of infinitely many homoclinic solutions for the following damped vibration problems \begin{eqnarray} \ddot q+A \dot q-L(t)q+W_q(t,q)=0, \end{eqnarray} where $A$ is an antisymmetric constant matrix, $L\in C(R,R^{n^2})$ is a symmetric and positive definite matrix for all $t\in R$, $W\in C^1(R\times R^n,R)$. The novelty of this paper is that, for the case that $W$ is subquadratic at infinity, we establish two new criteria to guarantee the existence of infinitely many homoclinic solutions for (DS) via the genus properties in critical point theory. Recent results in the literature are generalized and significantly improved.
Citation: Ziheng Zhang, Rong Yuan. Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 623-634. doi: 10.3934/cpaa.2014.13.623
References:
[1]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, paper title is capitalized., Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation,, Appl. Math. Lett., 16 (2003), 639.  doi: 10.1016/S0893-9659(03)00059-4.  Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

P. Caldiroli and P. Montecchiari, Homoclinic orbits for second order Hamiltonian systems with potential changing sign,, Comm. Appl. Nonlinear Anal., 1 (1994), 97.   Google Scholar

[4]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials,, J. Amer. Math. Soc., 4 (1991), 693.  doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[5]

A. Daouas, Homoclinic solutions for superquadratic Hamiltonian systems without periodicity assumption,, Nonlinear Anal., 74 (2011), 3407.  doi: 10.1016/j.na.2011.03.001.  Google Scholar

[6]

Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems,, Nonlinear Anal., 25 (1995), 1095.  doi: 10.1016/0362-546X(94)00229-B.  Google Scholar

[7]

Y. Ding and C. Lee, Homoclinics for asymptotically quadratic and supequadratic Hamiltonian systems,, Nonlinear Anal., 71 (2009), 1395.  doi: 10.1016/j.na.2008.10.116.  Google Scholar

[8]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems,, J. Differential Equations, 219 (2005), 375.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[9]

P. Korman and A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems,, Electron. J. Differential Equations, (1994), 1.  doi: 10.1.1.27.6093.  Google Scholar

[10]

X. Lv and J. Jiang, Existence of homoclinic solutions for a class of second-order Hamiltonian systems with general potentials,, Nonlinear Analysis: Real World Applications, 13 (2012), 1152.  doi: 10.1016/j.nonrwa.2011.09.008.  Google Scholar

[11]

X. Lv, S. Lu and P. Yan, Existence of homoclinic solutions for a class of second-order Hamiltonian systems,, Nonlinear Anal., 72 (2010), 390.  doi: 10.1016/j.na.2009.06.073.  Google Scholar

[12]

Y. Lv and C. Tang, Existence of even homoclinic orbits for a class of Hamiltonian systems,, Nonlinear Anal., 67 (2007), 2189.  doi: 10.1016/j.na.2006.08.043.  Google Scholar

[13]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems,, Differential Integral Equations, 5 (1992), 1115.   Google Scholar

[14]

H. Poincaré, Les méthodes nouvelles de la mécanique céleste,, Gauthier-Villars, (): 1897.   Google Scholar

[15]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Reg. Conf. Ser. in. Math., (1986).   Google Scholar

[16]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems,, Proc. Roy. Soc. Edinburgh Sect. A., 114 (1990), 33.  doi: 10.1017/S0308210500024240.  Google Scholar

[17]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems,, Math. Z., 206 (1991), 473.  doi: 10.1007/BF02571356.  Google Scholar

[18]

A. Salvatore, Homoclinic orbits for a special class of nonautonomous Hamiltonian systems,, Proceedings of the Second World Congress of Nonlinear Analysis, 30 (1997), 4849.  doi: SO362-546X(97)00142-9.  Google Scholar

[19]

J. Sun, H. Chen and J. J. Nieto, Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems,, J. Math. Anal. Appl., 373 (2011), 20.  doi: 10.1016/j.jmaa.2010.06.038.  Google Scholar

[20]

J. Sun, J. J. Nieto and M. Otero-Novoa, On homoclinic orbits for a class of damped vibration systems,, Advances in Difference Equations, 2012 ().  doi: 10.1186/1687-1847-2012-102.  Google Scholar

[21]

X. Tang and X. Lin, Infinitely many homoclinic orbits for Hamiltonian systems with indefinite subquadratic potentials,, Nonlinear Anal., 74 (2011), 6314.  doi: 10.1016/j.na.2011.06.010.  Google Scholar

[22]

X. Tang and X. Lin, Existence of infinitely many homoclinic orbits in Hamiltonian systems,, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 1103.  doi: 10.1017/S0308210509001346.  Google Scholar

[23]

L. Wan and C. Tang, Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition,, Discrete. Cont. Dyn. Syst. Ser. B, 15 (2011), 255.  doi: 10.3934/dcdsb.2011.15.255.  Google Scholar

[24]

J. Wang, J. Xu and F. Zhang, Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials,, Comm. Pure. Appl. Anal., 10 (2011), 269.  doi: 10.3934/cpaa.2011.10.269.  Google Scholar

[25]

J. Wang, F. Zhang and J. Xu, Existence and multiplicity of homoclinic orbits for the second order Hamiltonian systems,, J. Math. Anal. Appl., 366 (2010), 569.  doi: 10.1016/j.jmaa.2010.01.060.  Google Scholar

[26]

J. Wei and J, Wang, Infinitely many homoclinic orbits for the second order Hamiltonian systems with general potentials,, J. Math. Anal. Anal., 366 (2010), 694.  doi: 10.1016/j.jmaa.2009.12.024.  Google Scholar

[27]

X. Wu and W. Zhang, Existence and multiplicity of homoclinic solutions for a class of damped vibration problems,, Nonlinear Anal., 74 (2011), 4392.  doi: 10.1016/j.na.2011.03.059.  Google Scholar

[28]

M. Yang and Z. Han, The existence of homoclinic solutions for second-order Hamiltonian systems with periodic potentials,, Nonlinear Analysis: Real World Applications, 12 (2011), 2742.  doi: 10.1016/j.nonrwa.2011.03.019.  Google Scholar

[29]

M. Yang and Z. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities,, Nonlinear Anal., 74 (2011), 2635.  doi: 10.1016/j.na.2010.12.019.  Google Scholar

[30]

R. Yuan and Z. Zhang, Homoclinic solutions for a class of second order non-autonomous systems,, Electron. J. of Differential Equations, 128 (2009), 1.   Google Scholar

[31]

Q. Zhang and C. Liu, Infinitely many homoclinic solutions for second order Hamiltonian systems,, Nonlinear Anal., 72 (2010), 894.  doi: 10.1016/j.na.2009.07.021.  Google Scholar

[32]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 4125.  doi: 10.1016/j.na.2009.02.071.  Google Scholar

[33]

Z. Zhang and R. Yuan, Homoclinic solutions of some second order non-autonomous systems,, Nonlinear Anal., 71 (2009), 5790.  doi: 10.1016/j.na.2009.05.003.  Google Scholar

[34]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of asymptotically quadratic Hamiltonian systems,, Nonlinear Analysis: Real World Applications, 11 (2010), 4185.  doi: 10.1016/j.nonrwa.2010.05.005.  Google Scholar

[35]

W. Zhu, Existence of homoclinic solutions for a class of second order systems,, Nonlinear Anal., 75 (2012), 2455.  doi: 10.1016/j.na.2011.10.043.  Google Scholar

[36]

W. Zou and S. Li, Infinitely many homoclinic orbits for the second-order Hamiltonian systems,, Appl. Math. Lett., 16 (2003), 1283.  doi: 10.1016/S0893-9659(03)90130-3.  Google Scholar

show all references

References:
[1]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, paper title is capitalized., Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation,, Appl. Math. Lett., 16 (2003), 639.  doi: 10.1016/S0893-9659(03)00059-4.  Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

P. Caldiroli and P. Montecchiari, Homoclinic orbits for second order Hamiltonian systems with potential changing sign,, Comm. Appl. Nonlinear Anal., 1 (1994), 97.   Google Scholar

[4]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials,, J. Amer. Math. Soc., 4 (1991), 693.  doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[5]

A. Daouas, Homoclinic solutions for superquadratic Hamiltonian systems without periodicity assumption,, Nonlinear Anal., 74 (2011), 3407.  doi: 10.1016/j.na.2011.03.001.  Google Scholar

[6]

Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems,, Nonlinear Anal., 25 (1995), 1095.  doi: 10.1016/0362-546X(94)00229-B.  Google Scholar

[7]

Y. Ding and C. Lee, Homoclinics for asymptotically quadratic and supequadratic Hamiltonian systems,, Nonlinear Anal., 71 (2009), 1395.  doi: 10.1016/j.na.2008.10.116.  Google Scholar

[8]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems,, J. Differential Equations, 219 (2005), 375.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[9]

P. Korman and A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems,, Electron. J. Differential Equations, (1994), 1.  doi: 10.1.1.27.6093.  Google Scholar

[10]

X. Lv and J. Jiang, Existence of homoclinic solutions for a class of second-order Hamiltonian systems with general potentials,, Nonlinear Analysis: Real World Applications, 13 (2012), 1152.  doi: 10.1016/j.nonrwa.2011.09.008.  Google Scholar

[11]

X. Lv, S. Lu and P. Yan, Existence of homoclinic solutions for a class of second-order Hamiltonian systems,, Nonlinear Anal., 72 (2010), 390.  doi: 10.1016/j.na.2009.06.073.  Google Scholar

[12]

Y. Lv and C. Tang, Existence of even homoclinic orbits for a class of Hamiltonian systems,, Nonlinear Anal., 67 (2007), 2189.  doi: 10.1016/j.na.2006.08.043.  Google Scholar

[13]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems,, Differential Integral Equations, 5 (1992), 1115.   Google Scholar

[14]

H. Poincaré, Les méthodes nouvelles de la mécanique céleste,, Gauthier-Villars, (): 1897.   Google Scholar

[15]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Reg. Conf. Ser. in. Math., (1986).   Google Scholar

[16]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems,, Proc. Roy. Soc. Edinburgh Sect. A., 114 (1990), 33.  doi: 10.1017/S0308210500024240.  Google Scholar

[17]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems,, Math. Z., 206 (1991), 473.  doi: 10.1007/BF02571356.  Google Scholar

[18]

A. Salvatore, Homoclinic orbits for a special class of nonautonomous Hamiltonian systems,, Proceedings of the Second World Congress of Nonlinear Analysis, 30 (1997), 4849.  doi: SO362-546X(97)00142-9.  Google Scholar

[19]

J. Sun, H. Chen and J. J. Nieto, Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems,, J. Math. Anal. Appl., 373 (2011), 20.  doi: 10.1016/j.jmaa.2010.06.038.  Google Scholar

[20]

J. Sun, J. J. Nieto and M. Otero-Novoa, On homoclinic orbits for a class of damped vibration systems,, Advances in Difference Equations, 2012 ().  doi: 10.1186/1687-1847-2012-102.  Google Scholar

[21]

X. Tang and X. Lin, Infinitely many homoclinic orbits for Hamiltonian systems with indefinite subquadratic potentials,, Nonlinear Anal., 74 (2011), 6314.  doi: 10.1016/j.na.2011.06.010.  Google Scholar

[22]

X. Tang and X. Lin, Existence of infinitely many homoclinic orbits in Hamiltonian systems,, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 1103.  doi: 10.1017/S0308210509001346.  Google Scholar

[23]

L. Wan and C. Tang, Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition,, Discrete. Cont. Dyn. Syst. Ser. B, 15 (2011), 255.  doi: 10.3934/dcdsb.2011.15.255.  Google Scholar

[24]

J. Wang, J. Xu and F. Zhang, Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials,, Comm. Pure. Appl. Anal., 10 (2011), 269.  doi: 10.3934/cpaa.2011.10.269.  Google Scholar

[25]

J. Wang, F. Zhang and J. Xu, Existence and multiplicity of homoclinic orbits for the second order Hamiltonian systems,, J. Math. Anal. Appl., 366 (2010), 569.  doi: 10.1016/j.jmaa.2010.01.060.  Google Scholar

[26]

J. Wei and J, Wang, Infinitely many homoclinic orbits for the second order Hamiltonian systems with general potentials,, J. Math. Anal. Anal., 366 (2010), 694.  doi: 10.1016/j.jmaa.2009.12.024.  Google Scholar

[27]

X. Wu and W. Zhang, Existence and multiplicity of homoclinic solutions for a class of damped vibration problems,, Nonlinear Anal., 74 (2011), 4392.  doi: 10.1016/j.na.2011.03.059.  Google Scholar

[28]

M. Yang and Z. Han, The existence of homoclinic solutions for second-order Hamiltonian systems with periodic potentials,, Nonlinear Analysis: Real World Applications, 12 (2011), 2742.  doi: 10.1016/j.nonrwa.2011.03.019.  Google Scholar

[29]

M. Yang and Z. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities,, Nonlinear Anal., 74 (2011), 2635.  doi: 10.1016/j.na.2010.12.019.  Google Scholar

[30]

R. Yuan and Z. Zhang, Homoclinic solutions for a class of second order non-autonomous systems,, Electron. J. of Differential Equations, 128 (2009), 1.   Google Scholar

[31]

Q. Zhang and C. Liu, Infinitely many homoclinic solutions for second order Hamiltonian systems,, Nonlinear Anal., 72 (2010), 894.  doi: 10.1016/j.na.2009.07.021.  Google Scholar

[32]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 4125.  doi: 10.1016/j.na.2009.02.071.  Google Scholar

[33]

Z. Zhang and R. Yuan, Homoclinic solutions of some second order non-autonomous systems,, Nonlinear Anal., 71 (2009), 5790.  doi: 10.1016/j.na.2009.05.003.  Google Scholar

[34]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of asymptotically quadratic Hamiltonian systems,, Nonlinear Analysis: Real World Applications, 11 (2010), 4185.  doi: 10.1016/j.nonrwa.2010.05.005.  Google Scholar

[35]

W. Zhu, Existence of homoclinic solutions for a class of second order systems,, Nonlinear Anal., 75 (2012), 2455.  doi: 10.1016/j.na.2011.10.043.  Google Scholar

[36]

W. Zou and S. Li, Infinitely many homoclinic orbits for the second-order Hamiltonian systems,, Appl. Math. Lett., 16 (2003), 1283.  doi: 10.1016/S0893-9659(03)90130-3.  Google Scholar

[1]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[2]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[3]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[4]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[5]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[6]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[7]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[8]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[9]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[10]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[11]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[12]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[13]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[14]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[15]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[16]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[17]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[18]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[19]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[20]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]