• Previous Article
    Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials
  • CPAA Home
  • This Issue
  • Next Article
    Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials
March  2014, 13(2): 635-644. doi: 10.3934/cpaa.2014.13.635

A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities

1. 

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid 28040

2. 

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

Received  January 2013 Revised  September 2013 Published  October 2013

We show existence and uniqueness of global solutions for reaction-diffusion equations with almost-monotonic nonlinear terms in $L^q(\Omega)$ for each $1\leq q < \infty$. In particular, we do not assume restriction on the growth of the nonlinearites required by the standar local existence theory.
Citation: Aníbal Rodríguez-Bernal, Alejandro Vidal-López. A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (2) : 635-644. doi: 10.3934/cpaa.2014.13.635
References:
[1]

J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains,, Nonlinear Anal., 56 (2004), 515.  doi: 10.1016/j.na.2003.09.023.  Google Scholar

[2]

J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula,, Proc. Amer. Math. Soc., 63 (1977), 370.  doi: 10.2307/2041821.  Google Scholar

[3]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data,, J. Anal. Math., 68 (1996), 277.  doi: 10.1007/BF02790212.  Google Scholar

[4]

A. Carvalho, J. A. Langa and J. Robinson., "Attractors for Infinite-dimensional Non-autonomous Dynamical Systems,'' volume 182 of Applied Mathematical Sciences,, Springer, (2012).  doi: 10.1007/978-1-4614-4581-4_1.  Google Scholar

[5]

J. W. Cholewa and A. Rodríguez-Bernal, Extremal equilibria for dissipative parabolic equations in locally uniform spaces,, Math. Models Methods Appl. Sci., 19 (2009), 1995.  doi: 10.1142/S0218202509004029.  Google Scholar

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'' Volume 840 of Lecture Notes in Mathematics,, Springer-Verlag, (1981).   Google Scholar

[7]

M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic equations,, Comm. Partial Differential Equations, 24 (1999), 1445.  doi: 10.1080/03605309908821471.  Google Scholar

[8]

J. C. Robinson, A. Rodríguez-Bernal and A. Vidal-López, Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems,, J. Differ. Equations, 238 (2007), 289.  doi: 10.1016/j.jde.2007.03.028.  Google Scholar

[9]

A. Rodríguez-Bernal, Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data,, J. Differ. Equations, 181 (2002), 165.  doi: 10.1006/jdeq.2001.4072.  Google Scholar

[10]

A. Rodríguez-Bernal and A. Vidal-López, Extremal equilibria for reaction-diffusion equations in bounded domains and applications,, Journal of Differential Equations, 244 (2008), 2983.  doi: 10.1016/j.jde.2008.02.046.  Google Scholar

show all references

References:
[1]

J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains,, Nonlinear Anal., 56 (2004), 515.  doi: 10.1016/j.na.2003.09.023.  Google Scholar

[2]

J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula,, Proc. Amer. Math. Soc., 63 (1977), 370.  doi: 10.2307/2041821.  Google Scholar

[3]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data,, J. Anal. Math., 68 (1996), 277.  doi: 10.1007/BF02790212.  Google Scholar

[4]

A. Carvalho, J. A. Langa and J. Robinson., "Attractors for Infinite-dimensional Non-autonomous Dynamical Systems,'' volume 182 of Applied Mathematical Sciences,, Springer, (2012).  doi: 10.1007/978-1-4614-4581-4_1.  Google Scholar

[5]

J. W. Cholewa and A. Rodríguez-Bernal, Extremal equilibria for dissipative parabolic equations in locally uniform spaces,, Math. Models Methods Appl. Sci., 19 (2009), 1995.  doi: 10.1142/S0218202509004029.  Google Scholar

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'' Volume 840 of Lecture Notes in Mathematics,, Springer-Verlag, (1981).   Google Scholar

[7]

M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic equations,, Comm. Partial Differential Equations, 24 (1999), 1445.  doi: 10.1080/03605309908821471.  Google Scholar

[8]

J. C. Robinson, A. Rodríguez-Bernal and A. Vidal-López, Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems,, J. Differ. Equations, 238 (2007), 289.  doi: 10.1016/j.jde.2007.03.028.  Google Scholar

[9]

A. Rodríguez-Bernal, Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data,, J. Differ. Equations, 181 (2002), 165.  doi: 10.1006/jdeq.2001.4072.  Google Scholar

[10]

A. Rodríguez-Bernal and A. Vidal-López, Extremal equilibria for reaction-diffusion equations in bounded domains and applications,, Journal of Differential Equations, 244 (2008), 2983.  doi: 10.1016/j.jde.2008.02.046.  Google Scholar

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[5]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[6]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[7]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[8]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[11]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[12]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[13]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[14]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[15]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[16]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[17]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[18]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[19]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[20]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

[Back to Top]