-
Previous Article
Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials
- CPAA Home
- This Issue
-
Next Article
Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials
A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities
1. | Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid 28040 |
2. | Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom |
References:
[1] |
J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains,, Nonlinear Anal., 56 (2004), 515.
doi: 10.1016/j.na.2003.09.023. |
[2] |
J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula,, Proc. Amer. Math. Soc., 63 (1977), 370.
doi: 10.2307/2041821. |
[3] |
H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data,, J. Anal. Math., 68 (1996), 277.
doi: 10.1007/BF02790212. |
[4] |
A. Carvalho, J. A. Langa and J. Robinson., "Attractors for Infinite-dimensional Non-autonomous Dynamical Systems,'' volume 182 of Applied Mathematical Sciences,, Springer, (2012).
doi: 10.1007/978-1-4614-4581-4_1. |
[5] |
J. W. Cholewa and A. Rodríguez-Bernal, Extremal equilibria for dissipative parabolic equations in locally uniform spaces,, Math. Models Methods Appl. Sci., 19 (2009), 1995.
doi: 10.1142/S0218202509004029. |
[6] |
D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'' Volume 840 of Lecture Notes in Mathematics,, Springer-Verlag, (1981). Google Scholar |
[7] |
M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic equations,, Comm. Partial Differential Equations, 24 (1999), 1445.
doi: 10.1080/03605309908821471. |
[8] |
J. C. Robinson, A. Rodríguez-Bernal and A. Vidal-López, Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems,, J. Differ. Equations, 238 (2007), 289.
doi: 10.1016/j.jde.2007.03.028. |
[9] |
A. Rodríguez-Bernal, Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data,, J. Differ. Equations, 181 (2002), 165.
doi: 10.1006/jdeq.2001.4072. |
[10] |
A. Rodríguez-Bernal and A. Vidal-López, Extremal equilibria for reaction-diffusion equations in bounded domains and applications,, Journal of Differential Equations, 244 (2008), 2983.
doi: 10.1016/j.jde.2008.02.046. |
show all references
References:
[1] |
J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains,, Nonlinear Anal., 56 (2004), 515.
doi: 10.1016/j.na.2003.09.023. |
[2] |
J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula,, Proc. Amer. Math. Soc., 63 (1977), 370.
doi: 10.2307/2041821. |
[3] |
H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data,, J. Anal. Math., 68 (1996), 277.
doi: 10.1007/BF02790212. |
[4] |
A. Carvalho, J. A. Langa and J. Robinson., "Attractors for Infinite-dimensional Non-autonomous Dynamical Systems,'' volume 182 of Applied Mathematical Sciences,, Springer, (2012).
doi: 10.1007/978-1-4614-4581-4_1. |
[5] |
J. W. Cholewa and A. Rodríguez-Bernal, Extremal equilibria for dissipative parabolic equations in locally uniform spaces,, Math. Models Methods Appl. Sci., 19 (2009), 1995.
doi: 10.1142/S0218202509004029. |
[6] |
D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'' Volume 840 of Lecture Notes in Mathematics,, Springer-Verlag, (1981). Google Scholar |
[7] |
M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic equations,, Comm. Partial Differential Equations, 24 (1999), 1445.
doi: 10.1080/03605309908821471. |
[8] |
J. C. Robinson, A. Rodríguez-Bernal and A. Vidal-López, Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems,, J. Differ. Equations, 238 (2007), 289.
doi: 10.1016/j.jde.2007.03.028. |
[9] |
A. Rodríguez-Bernal, Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data,, J. Differ. Equations, 181 (2002), 165.
doi: 10.1006/jdeq.2001.4072. |
[10] |
A. Rodríguez-Bernal and A. Vidal-López, Extremal equilibria for reaction-diffusion equations in bounded domains and applications,, Journal of Differential Equations, 244 (2008), 2983.
doi: 10.1016/j.jde.2008.02.046. |
[1] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[2] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[3] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[4] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[5] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[6] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[7] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[8] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[9] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[10] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[11] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[12] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[13] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[14] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[15] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[16] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[17] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[18] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[19] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[20] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]