March  2014, 13(2): 645-655. doi: 10.3934/cpaa.2014.13.645

Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials

1. 

School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China, China

Received  January 2013 Revised  July 2013 Published  October 2013

In this paper, we consider the boundedness of solutions for a class of impact oscillators with time dependent polynomial potentials, \begin{eqnarray} \ddot{x}+x^{2n+1}+\sum_{i=0}^{2n}p_{i}(t)x^{i}=0, \quad for\ x(t)> 0,\\ x(t)\geq 0,\\ \dot{x}(t_{0}^{+})=-\dot{x}(t_{0}^{-}), \quad if\ x(t_{0})=0, \end{eqnarray} where $n\in N^+$, $p_i(t+1)=p_i(t)$ and $p_i(t)\in C^5(R/Z).$
Citation: Daxiong Piao, Xiang Sun. Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 645-655. doi: 10.3934/cpaa.2014.13.645
References:
[1]

R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the Twist Theorem,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 79.   Google Scholar

[2]

S. Laederich and M. Levi, Invariant curves and time-dependent potentials,, Ergo.Th. and Dynam. Syst., 11 (1991), 365.  doi: 10.1017/S0143385700006192.  Google Scholar

[3]

X. Yuan, Invariant tori of Duffing-type equations,, Adv. in Math. (China), 24 (1995), 375.   Google Scholar

[4]

X. Yuan, Invariant tori of Duffing-type equations,, J. Differential Equations, 142 (1998), 231.   Google Scholar

[5]

M. Kunze, "Non-Smooth Dynamical Systems,", in: Lecture Notes in Math., (2000).   Google Scholar

[6]

H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator,, Physica D, 82 (1995), 117.  doi: 10.1016/0167-2789(94)00222-C.  Google Scholar

[7]

P. Boyland, Dual billiards, twist maps and impact oscillators,, Nonlinearity, 9 (1996), 1411.  doi: 10.1088/0951-7715/9/6/002.  Google Scholar

[8]

M. Corbera and J. Llibre, Periodic orbits of a collinear restricted three body problem,, Celestial Mech. Dynam. Astronom., 86 (2003), 163.  doi: 10.1023/A:1024183003251.  Google Scholar

[9]

D. Qian and P. J. Torres, Periodic motions of linear impact oscilltors via successor map,, SIAM J. Math. Anal., 36 (2005), 1707.  doi: 10.1137/S003614100343771X.  Google Scholar

[10]

D. Qian and X. Sun, Inariant tori for asymptotically linear impact oscillators,, Sci. China: Ser. A Math., 49 (2006), 669.  doi: 10.1007/s11425-006-0669-5.  Google Scholar

[11]

V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts,, Comm. Math. Phys., 211 (2000), 289.  doi: 10.1007/s002200050813.  Google Scholar

[12]

Z. Wang and Y. Wang, Existence of quasiperiodic solutions and Littlewood's boundedness problem of super-linear impact oscillators,, Applied Mathematics and Computation, 217 (2011), 6417.  doi: 10.1016/j.amc.2011.01.037.  Google Scholar

[13]

Z. Wang, Q. Liu and D. Qian, Existence of quasiperiodic solutions and Littlewood's boundedness problem of sub-linear impact oscillators,, Nonlinear Analysis, 74 (2011), 5606.  doi: 10.1016/j.na.2011.05.046.  Google Scholar

[14]

D. Qian, Large amplitude periodic bouncing in impact oscillators with damping,, Proc. Amer. Math. Soc., 133 (2005), 1797.  doi: 10.1090/S0002-9939-04-07759-7.  Google Scholar

[15]

D. Qian and P. J. Torres, Bouncing solutions of an equation with attractive singularity,, Proc. Roy. Soc. Edinburgh, 134 (2004), 201.  doi: 10.1017/S0308210500003164.  Google Scholar

[16]

Z. Wang, C. Ruan and D. Qian, Existence and multiplicity of subharmonic bouncing solutions for sub-linear impact oscillators,, J. Nanjing Univ. Math. Biquart., 27 (2010), 17.  doi: 10.3969/j.issn.0469-5097.2010.01.003.  Google Scholar

[17]

R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem,, Proc. London. Math. Soc., 79 (1999), 381.  doi: 10.1112/S0024611599012034.  Google Scholar

[18]

M. Levi, Quasiperiodic motions in superquadratic time-periodic potentials,, Commun. Math. Phys., 143 (1991), 43.  doi: 10.1007/BF02100285.  Google Scholar

[19]

B. Liu, Boundedness in nonlinear oscillations at resonance,, J. Differential Equations, 153 (1999), 142.  doi: 10.1006/jdeq.1998.3553.  Google Scholar

[20]

L. Jiao, D. Piao and Y. Wang, Boundedness for the general semilinear Duffing equation via the twist theorem,, J. Differential Equations, 252 (2012), 91.  doi: 10.1016/j.jde.2011.09.019.  Google Scholar

[21]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. wiss, Kl. (1962), 1.   Google Scholar

[22]

H. Rüssman, On the existence of invariant curves of twist mappings of an annulus,, Lecture Notes Math., 1007 (1983), 677.  doi: 10.1007/BFb0061441.  Google Scholar

show all references

References:
[1]

R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the Twist Theorem,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 79.   Google Scholar

[2]

S. Laederich and M. Levi, Invariant curves and time-dependent potentials,, Ergo.Th. and Dynam. Syst., 11 (1991), 365.  doi: 10.1017/S0143385700006192.  Google Scholar

[3]

X. Yuan, Invariant tori of Duffing-type equations,, Adv. in Math. (China), 24 (1995), 375.   Google Scholar

[4]

X. Yuan, Invariant tori of Duffing-type equations,, J. Differential Equations, 142 (1998), 231.   Google Scholar

[5]

M. Kunze, "Non-Smooth Dynamical Systems,", in: Lecture Notes in Math., (2000).   Google Scholar

[6]

H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator,, Physica D, 82 (1995), 117.  doi: 10.1016/0167-2789(94)00222-C.  Google Scholar

[7]

P. Boyland, Dual billiards, twist maps and impact oscillators,, Nonlinearity, 9 (1996), 1411.  doi: 10.1088/0951-7715/9/6/002.  Google Scholar

[8]

M. Corbera and J. Llibre, Periodic orbits of a collinear restricted three body problem,, Celestial Mech. Dynam. Astronom., 86 (2003), 163.  doi: 10.1023/A:1024183003251.  Google Scholar

[9]

D. Qian and P. J. Torres, Periodic motions of linear impact oscilltors via successor map,, SIAM J. Math. Anal., 36 (2005), 1707.  doi: 10.1137/S003614100343771X.  Google Scholar

[10]

D. Qian and X. Sun, Inariant tori for asymptotically linear impact oscillators,, Sci. China: Ser. A Math., 49 (2006), 669.  doi: 10.1007/s11425-006-0669-5.  Google Scholar

[11]

V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts,, Comm. Math. Phys., 211 (2000), 289.  doi: 10.1007/s002200050813.  Google Scholar

[12]

Z. Wang and Y. Wang, Existence of quasiperiodic solutions and Littlewood's boundedness problem of super-linear impact oscillators,, Applied Mathematics and Computation, 217 (2011), 6417.  doi: 10.1016/j.amc.2011.01.037.  Google Scholar

[13]

Z. Wang, Q. Liu and D. Qian, Existence of quasiperiodic solutions and Littlewood's boundedness problem of sub-linear impact oscillators,, Nonlinear Analysis, 74 (2011), 5606.  doi: 10.1016/j.na.2011.05.046.  Google Scholar

[14]

D. Qian, Large amplitude periodic bouncing in impact oscillators with damping,, Proc. Amer. Math. Soc., 133 (2005), 1797.  doi: 10.1090/S0002-9939-04-07759-7.  Google Scholar

[15]

D. Qian and P. J. Torres, Bouncing solutions of an equation with attractive singularity,, Proc. Roy. Soc. Edinburgh, 134 (2004), 201.  doi: 10.1017/S0308210500003164.  Google Scholar

[16]

Z. Wang, C. Ruan and D. Qian, Existence and multiplicity of subharmonic bouncing solutions for sub-linear impact oscillators,, J. Nanjing Univ. Math. Biquart., 27 (2010), 17.  doi: 10.3969/j.issn.0469-5097.2010.01.003.  Google Scholar

[17]

R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem,, Proc. London. Math. Soc., 79 (1999), 381.  doi: 10.1112/S0024611599012034.  Google Scholar

[18]

M. Levi, Quasiperiodic motions in superquadratic time-periodic potentials,, Commun. Math. Phys., 143 (1991), 43.  doi: 10.1007/BF02100285.  Google Scholar

[19]

B. Liu, Boundedness in nonlinear oscillations at resonance,, J. Differential Equations, 153 (1999), 142.  doi: 10.1006/jdeq.1998.3553.  Google Scholar

[20]

L. Jiao, D. Piao and Y. Wang, Boundedness for the general semilinear Duffing equation via the twist theorem,, J. Differential Equations, 252 (2012), 91.  doi: 10.1016/j.jde.2011.09.019.  Google Scholar

[21]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. wiss, Kl. (1962), 1.   Google Scholar

[22]

H. Rüssman, On the existence of invariant curves of twist mappings of an annulus,, Lecture Notes Math., 1007 (1983), 677.  doi: 10.1007/BFb0061441.  Google Scholar

[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[4]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[5]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[6]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[8]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[9]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[10]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[11]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[12]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[13]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[14]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[15]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[16]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[17]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[18]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[19]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[20]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]