March  2014, 13(2): 673-685. doi: 10.3934/cpaa.2014.13.673

Local well-posedness for the nonlinear Dirac equation in two space dimensions

1. 

Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42097 Wuppertal

Received  March 2013 Revised  August 2013 Published  October 2013

The Cauchy problem for the cubic nonlinear Dirac equation in two space dimensions is locally well-posed for data in $H^s$ for $ s > 1/2$. The proof given in spaces of Bourgain-Klainerman-Machedon type relies on the null structure of the nonlinearity as used by d'Ancona-Foschi-Selberg for the Dirac-Klein-Gordon system before and bilinear Strichartz type estimates for the wave equation by Selberg and Foschi-Klainerman.
Citation: Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673
References:
[1]

P. d'Ancona, D. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, Journal of the EMS, 9 (2007), 877-898.

[2]

P. d'Ancona, D. Foschi and S. Selberg, Local well-posedness below the charge norm for the Dirac-Klein-Gordon system in two space dimensions, Journal Hyperbolic Diff. Equations, 4 (2007), 295-330.

[3]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.

[4]

V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. AMS, 69 (1978), 289-296.

[5]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(R^3)$ for $s>1$, SIAM J. Math. Anal., 28 (1997), 338-362.

[6]

R. Finkelstein, C. Fronsdal and P. Kaus, Nonlinear spinor field, Phys. Rev., 103 (1956), 1571-1579.

[7]

R. Finkelstein, R. LeLevier and M. Ruderman, Nonlinear spinor fields, Phys. Rev., 83 (1951), 326-333.

[8]

D. Foschi and S. Klainerman, Homogeneous $L^2$ bilinear estimates for wave equations, Ann. Scient. ENS $4^e$ serie, 23 (2000), 211-274.

[9]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Analysis, 133 (1995), 50-68.

[10]

D. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10 (1974), 3235-3253.

[11]

A. Grünrock and H. Pecher, Global solutions for the Dirac-Klein-Gordon system in two space dimensions, Comm. Partial Differential Equations, 35 (2010), 89-112.

[12]

S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal., 219 (2005), 1-20.

[13]

S. Machihara, K. Nakanishi and T. Ozawa, Small global solutions and the relativistic limit for the nonlinear Dirac equation, Rev. Math. Iberoamericana, 19 (2003), 179-194.

[14]

S. Selberg, "Multilinear Spacetime Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations," Ph.D. thesis, Princeton Univ., 1999.

[15]

S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Diff. Int. Equ., 23 (2010), 265-278.

[16]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.

[17]

W.E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112.

show all references

References:
[1]

P. d'Ancona, D. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, Journal of the EMS, 9 (2007), 877-898.

[2]

P. d'Ancona, D. Foschi and S. Selberg, Local well-posedness below the charge norm for the Dirac-Klein-Gordon system in two space dimensions, Journal Hyperbolic Diff. Equations, 4 (2007), 295-330.

[3]

T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.

[4]

V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. AMS, 69 (1978), 289-296.

[5]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(R^3)$ for $s>1$, SIAM J. Math. Anal., 28 (1997), 338-362.

[6]

R. Finkelstein, C. Fronsdal and P. Kaus, Nonlinear spinor field, Phys. Rev., 103 (1956), 1571-1579.

[7]

R. Finkelstein, R. LeLevier and M. Ruderman, Nonlinear spinor fields, Phys. Rev., 83 (1951), 326-333.

[8]

D. Foschi and S. Klainerman, Homogeneous $L^2$ bilinear estimates for wave equations, Ann. Scient. ENS $4^e$ serie, 23 (2000), 211-274.

[9]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Analysis, 133 (1995), 50-68.

[10]

D. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10 (1974), 3235-3253.

[11]

A. Grünrock and H. Pecher, Global solutions for the Dirac-Klein-Gordon system in two space dimensions, Comm. Partial Differential Equations, 35 (2010), 89-112.

[12]

S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal., 219 (2005), 1-20.

[13]

S. Machihara, K. Nakanishi and T. Ozawa, Small global solutions and the relativistic limit for the nonlinear Dirac equation, Rev. Math. Iberoamericana, 19 (2003), 179-194.

[14]

S. Selberg, "Multilinear Spacetime Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations," Ph.D. thesis, Princeton Univ., 1999.

[15]

S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Diff. Int. Equ., 23 (2010), 265-278.

[16]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.

[17]

W.E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112.

[1]

Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061

[2]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[3]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure and Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

[4]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[5]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[6]

Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008

[7]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[8]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[9]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[10]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[11]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[12]

Kiyeon Lee. Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3683-3702. doi: 10.3934/cpaa.2021126

[13]

Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146

[14]

Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations and Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035

[15]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[16]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[17]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[18]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[19]

Ricardo A. Pastrán, Oscar G. Riaño. Sharp well-posedness for the Chen-Lee equation. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2179-2202. doi: 10.3934/cpaa.2016033

[20]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]