[1]
|
L. Barreira and C. Valls, Stable manifolds for nonautonomous equations without exponential dichotomy, J. Differential Equations, 221 (2006), 58-90.
|
[2]
|
L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity, J. Dynam. Differential Equations, 19 (2007), 215-241.
|
[3]
|
G. Belickiĭ, Functional equations, and conjugacy of local diffeomorphisms of finite smoothness class, Functional Anal. Appl., 7 (1973), 268-277.
|
[4]
|
G. Belickiĭ, Equivalence and normal forms of germs of smooth mappings, Russian Math. Surveys, 33 (1978), 107-177.
|
[5]
|
D. Grobman, Homeomorphism of systems of differential equations, Dokl. Akad. Nauk SSSR, 128 (1959), 880-881.
|
[6]
|
D. Grobman, Topological classification of neighborhoods of a singularity in $n$-space, Mat. Sb. (N.S.), 56 (1962), 77-94.
|
[7]
|
P. Hartman, A lemma in the theory of structural stability of differential equations, Proc. Amer. Math. Soc., 11 (1960), 610-620.
|
[8]
|
P. Hartman, On the local linearization of differential equations, Proc. Amer. Math. Soc., 14 (1963), 568-573.
|
[9]
|
P. McSwiggen, A geometric characterization of smooth linearizability, Michigan Math. J., 43 (1996), 321-335.
|
[10]
|
J. Palis, On the local structure of hyperbolic points in Banach spaces, An. Acad. Brasil. Ci., 40 (1968), 263-266.
|
[11]
|
K. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.
|
[12]
|
C. Pugh, On a theorem of P. Hartman, Amer. J. Math., 91 (1969), 363-367.
|
[13]
|
G. Sell, Smooth linearization near a fixed point, Amer. J. Math., 107 (1985), 1035-1091.
|
[14]
|
S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math., 79 (1957), 809-824.
|
[15]
|
S. Sternberg, On the structure of local homeomorphisms of euclidean $n$-space. II., Amer. J. Math., 80 (1958), 623-631.
|