March  2014, 13(2): 687-701. doi: 10.3934/cpaa.2014.13.687

Topological conjugacies and behavior at infinity

1. 

Departamento de Matemática, Instituto Superior Técnico, UTL, 1049-001 Lisboa

2. 

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa

Received  March 2013 Revised  June 2013 Published  October 2013

We obtain a version of the Grobman--Hartman theorem in Banach spaces for perturbations of a nonuniform exponential contraction, both for discrete and continuous time. More precisely, we consider the general case of an exponential contraction with an arbitrary nonuniform part and obtained from a nonautonomous dynamics, and we establish the existence of Hölder continuous conjugacies between an exponential contraction and any sufficiently small perturbation. As a nontrivial application, we describe the asymptotic behavior of the topological conjugacies in terms of the perturbations: namely, we show that for perturbations growing in a certain controlled manner the conjugacies approach zero at infinity and that when the perturbations decay exponentially at infinity the conjugacies have the same exponential behavior.
Citation: Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure & Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687
References:
[1]

L. Barreira and C. Valls, Stable manifolds for nonautonomous equations without exponential dichotomy,, J. Differential Equations, 221 (2006), 58.   Google Scholar

[2]

L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity,, J. Dynam. Differential Equations, 19 (2007), 215.   Google Scholar

[3]

G. Belickiĭ, Functional equations, and conjugacy of local diffeomorphisms of finite smoothness class,, Functional Anal. Appl., 7 (1973), 268.   Google Scholar

[4]

G. Belickiĭ, Equivalence and normal forms of germs of smooth mappings,, Russian Math. Surveys, 33 (1978), 107.   Google Scholar

[5]

D. Grobman, Homeomorphism of systems of differential equations,, Dokl. Akad. Nauk SSSR, 128 (1959), 880.   Google Scholar

[6]

D. Grobman, Topological classification of neighborhoods of a singularity in $n$-space,, Mat. Sb. (N.S.), 56 (1962), 77.   Google Scholar

[7]

P. Hartman, A lemma in the theory of structural stability of differential equations,, Proc. Amer. Math. Soc., 11 (1960), 610.   Google Scholar

[8]

P. Hartman, On the local linearization of differential equations,, Proc. Amer. Math. Soc., 14 (1963), 568.   Google Scholar

[9]

P. McSwiggen, A geometric characterization of smooth linearizability,, Michigan Math. J., 43 (1996), 321.   Google Scholar

[10]

J. Palis, On the local structure of hyperbolic points in Banach spaces,, An. Acad. Brasil. Ci., 40 (1968), 263.   Google Scholar

[11]

K. Palmer, A generalization of Hartman's linearization theorem,, J. Math. Anal. Appl., 41 (1973), 753.   Google Scholar

[12]

C. Pugh, On a theorem of P. Hartman,, Amer. J. Math., 91 (1969), 363.   Google Scholar

[13]

G. Sell, Smooth linearization near a fixed point,, Amer. J. Math., 107 (1985), 1035.   Google Scholar

[14]

S. Sternberg, Local contractions and a theorem of Poincaré,, Amer. J. Math., 79 (1957), 809.   Google Scholar

[15]

S. Sternberg, On the structure of local homeomorphisms of euclidean $n$-space. II.,, Amer. J. Math., 80 (1958), 623.   Google Scholar

show all references

References:
[1]

L. Barreira and C. Valls, Stable manifolds for nonautonomous equations without exponential dichotomy,, J. Differential Equations, 221 (2006), 58.   Google Scholar

[2]

L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity,, J. Dynam. Differential Equations, 19 (2007), 215.   Google Scholar

[3]

G. Belickiĭ, Functional equations, and conjugacy of local diffeomorphisms of finite smoothness class,, Functional Anal. Appl., 7 (1973), 268.   Google Scholar

[4]

G. Belickiĭ, Equivalence and normal forms of germs of smooth mappings,, Russian Math. Surveys, 33 (1978), 107.   Google Scholar

[5]

D. Grobman, Homeomorphism of systems of differential equations,, Dokl. Akad. Nauk SSSR, 128 (1959), 880.   Google Scholar

[6]

D. Grobman, Topological classification of neighborhoods of a singularity in $n$-space,, Mat. Sb. (N.S.), 56 (1962), 77.   Google Scholar

[7]

P. Hartman, A lemma in the theory of structural stability of differential equations,, Proc. Amer. Math. Soc., 11 (1960), 610.   Google Scholar

[8]

P. Hartman, On the local linearization of differential equations,, Proc. Amer. Math. Soc., 14 (1963), 568.   Google Scholar

[9]

P. McSwiggen, A geometric characterization of smooth linearizability,, Michigan Math. J., 43 (1996), 321.   Google Scholar

[10]

J. Palis, On the local structure of hyperbolic points in Banach spaces,, An. Acad. Brasil. Ci., 40 (1968), 263.   Google Scholar

[11]

K. Palmer, A generalization of Hartman's linearization theorem,, J. Math. Anal. Appl., 41 (1973), 753.   Google Scholar

[12]

C. Pugh, On a theorem of P. Hartman,, Amer. J. Math., 91 (1969), 363.   Google Scholar

[13]

G. Sell, Smooth linearization near a fixed point,, Amer. J. Math., 107 (1985), 1035.   Google Scholar

[14]

S. Sternberg, Local contractions and a theorem of Poincaré,, Amer. J. Math., 79 (1957), 809.   Google Scholar

[15]

S. Sternberg, On the structure of local homeomorphisms of euclidean $n$-space. II.,, Amer. J. Math., 80 (1958), 623.   Google Scholar

[1]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[3]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[7]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[8]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[9]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[10]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]