March  2014, 13(2): 703-713. doi: 10.3934/cpaa.2014.13.703

Formal equivalence between normal forms of reversible and hamiltonian dynamical systems

1. 

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, 13083–859 Campinas, SP

Received  March 2013 Revised  August 2013 Published  October 2013

We show the existence of formal equivalences between $2n$-dimensional reversible and Hamiltonian vector fields. The main tool we employ is the normal form theory.
Citation: Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703
References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).   Google Scholar

[2]

F. Antoneli, P. H. Baptistelli, A. P. Dias and M. Manoel, Invariant theory and reversible-equivariant vector fields,, J. Pure Appl. Algebra, 213 (2009), 649.  doi: 10.1016/j.jpaa.2008.08.002.  Google Scholar

[3]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).   Google Scholar

[4]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Fundamental Principles of Mathematical Sciences {\bf 250}. Springer-Verlag, 250 (1998).   Google Scholar

[5]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199.  doi: 10.1090/S0002-9947-1917-1501070-3.  Google Scholar

[6]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89.  doi: 10.1090/S0002-9947-1976-0402815-3.  Google Scholar

[7]

G. Gaeta, Normal forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917.  doi: 10.1007/BF00671033.  Google Scholar

[8]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.  doi: 10.1007/s10231-006-0036-8.  Google Scholar

[9]

R. M. Martins and M. A. Teixeira, On the Similarity of Hamiltonian and reversible vector fields in 4D,, Communications on Pure and Applied Analysis, 10 (2011), 1257.  doi: 10.3934/cpaa.2011.10.1257.  Google Scholar

[10]

R. M. Martins and M. A. Teixeira, Reversible-equivariant systems and matricial equations,, Anais da Academia Brasileira de Ci\^encias, 83 (2011), 1.  doi: 10.1590/S0001-37652011000200003.  Google Scholar

[11]

J. C. van der Meer, "The Hamiltonian Hopf Bifurcation,", Lecture Notes in Mathematics, 1160 (1982).   Google Scholar

[12]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, "Hamiltonian Structure of the Reversible Nonsemisimple 1:1 Resonance,", Dynamics, (1994).   Google Scholar

[13]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51.  doi: 10.1090/S0002-9947-1935-1501778-0.  Google Scholar

[14]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1935), 132.  doi: 10.1016/S0167-2789(97)00207-8.  Google Scholar

[15]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101.  doi: 10.1016/S0167-2789(96)00183-2.  Google Scholar

show all references

References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).   Google Scholar

[2]

F. Antoneli, P. H. Baptistelli, A. P. Dias and M. Manoel, Invariant theory and reversible-equivariant vector fields,, J. Pure Appl. Algebra, 213 (2009), 649.  doi: 10.1016/j.jpaa.2008.08.002.  Google Scholar

[3]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).   Google Scholar

[4]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Fundamental Principles of Mathematical Sciences {\bf 250}. Springer-Verlag, 250 (1998).   Google Scholar

[5]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199.  doi: 10.1090/S0002-9947-1917-1501070-3.  Google Scholar

[6]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89.  doi: 10.1090/S0002-9947-1976-0402815-3.  Google Scholar

[7]

G. Gaeta, Normal forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917.  doi: 10.1007/BF00671033.  Google Scholar

[8]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.  doi: 10.1007/s10231-006-0036-8.  Google Scholar

[9]

R. M. Martins and M. A. Teixeira, On the Similarity of Hamiltonian and reversible vector fields in 4D,, Communications on Pure and Applied Analysis, 10 (2011), 1257.  doi: 10.3934/cpaa.2011.10.1257.  Google Scholar

[10]

R. M. Martins and M. A. Teixeira, Reversible-equivariant systems and matricial equations,, Anais da Academia Brasileira de Ci\^encias, 83 (2011), 1.  doi: 10.1590/S0001-37652011000200003.  Google Scholar

[11]

J. C. van der Meer, "The Hamiltonian Hopf Bifurcation,", Lecture Notes in Mathematics, 1160 (1982).   Google Scholar

[12]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, "Hamiltonian Structure of the Reversible Nonsemisimple 1:1 Resonance,", Dynamics, (1994).   Google Scholar

[13]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51.  doi: 10.1090/S0002-9947-1935-1501778-0.  Google Scholar

[14]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1935), 132.  doi: 10.1016/S0167-2789(97)00207-8.  Google Scholar

[15]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101.  doi: 10.1016/S0167-2789(96)00183-2.  Google Scholar

[1]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[2]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[3]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[4]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[5]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[6]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[7]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[8]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[9]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[10]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[11]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[12]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[14]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[15]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[16]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[17]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[18]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[19]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[20]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]