March  2014, 13(2): 703-713. doi: 10.3934/cpaa.2014.13.703

Formal equivalence between normal forms of reversible and hamiltonian dynamical systems

1. 

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, 13083–859 Campinas, SP

Received  March 2013 Revised  August 2013 Published  October 2013

We show the existence of formal equivalences between $2n$-dimensional reversible and Hamiltonian vector fields. The main tool we employ is the normal form theory.
Citation: Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703
References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).   Google Scholar

[2]

F. Antoneli, P. H. Baptistelli, A. P. Dias and M. Manoel, Invariant theory and reversible-equivariant vector fields,, J. Pure Appl. Algebra, 213 (2009), 649.  doi: 10.1016/j.jpaa.2008.08.002.  Google Scholar

[3]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).   Google Scholar

[4]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Fundamental Principles of Mathematical Sciences {\bf 250}. Springer-Verlag, 250 (1998).   Google Scholar

[5]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199.  doi: 10.1090/S0002-9947-1917-1501070-3.  Google Scholar

[6]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89.  doi: 10.1090/S0002-9947-1976-0402815-3.  Google Scholar

[7]

G. Gaeta, Normal forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917.  doi: 10.1007/BF00671033.  Google Scholar

[8]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.  doi: 10.1007/s10231-006-0036-8.  Google Scholar

[9]

R. M. Martins and M. A. Teixeira, On the Similarity of Hamiltonian and reversible vector fields in 4D,, Communications on Pure and Applied Analysis, 10 (2011), 1257.  doi: 10.3934/cpaa.2011.10.1257.  Google Scholar

[10]

R. M. Martins and M. A. Teixeira, Reversible-equivariant systems and matricial equations,, Anais da Academia Brasileira de Ci\^encias, 83 (2011), 1.  doi: 10.1590/S0001-37652011000200003.  Google Scholar

[11]

J. C. van der Meer, "The Hamiltonian Hopf Bifurcation,", Lecture Notes in Mathematics, 1160 (1982).   Google Scholar

[12]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, "Hamiltonian Structure of the Reversible Nonsemisimple 1:1 Resonance,", Dynamics, (1994).   Google Scholar

[13]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51.  doi: 10.1090/S0002-9947-1935-1501778-0.  Google Scholar

[14]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1935), 132.  doi: 10.1016/S0167-2789(97)00207-8.  Google Scholar

[15]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101.  doi: 10.1016/S0167-2789(96)00183-2.  Google Scholar

show all references

References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).   Google Scholar

[2]

F. Antoneli, P. H. Baptistelli, A. P. Dias and M. Manoel, Invariant theory and reversible-equivariant vector fields,, J. Pure Appl. Algebra, 213 (2009), 649.  doi: 10.1016/j.jpaa.2008.08.002.  Google Scholar

[3]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).   Google Scholar

[4]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Fundamental Principles of Mathematical Sciences {\bf 250}. Springer-Verlag, 250 (1998).   Google Scholar

[5]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199.  doi: 10.1090/S0002-9947-1917-1501070-3.  Google Scholar

[6]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89.  doi: 10.1090/S0002-9947-1976-0402815-3.  Google Scholar

[7]

G. Gaeta, Normal forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917.  doi: 10.1007/BF00671033.  Google Scholar

[8]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.  doi: 10.1007/s10231-006-0036-8.  Google Scholar

[9]

R. M. Martins and M. A. Teixeira, On the Similarity of Hamiltonian and reversible vector fields in 4D,, Communications on Pure and Applied Analysis, 10 (2011), 1257.  doi: 10.3934/cpaa.2011.10.1257.  Google Scholar

[10]

R. M. Martins and M. A. Teixeira, Reversible-equivariant systems and matricial equations,, Anais da Academia Brasileira de Ci\^encias, 83 (2011), 1.  doi: 10.1590/S0001-37652011000200003.  Google Scholar

[11]

J. C. van der Meer, "The Hamiltonian Hopf Bifurcation,", Lecture Notes in Mathematics, 1160 (1982).   Google Scholar

[12]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, "Hamiltonian Structure of the Reversible Nonsemisimple 1:1 Resonance,", Dynamics, (1994).   Google Scholar

[13]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51.  doi: 10.1090/S0002-9947-1935-1501778-0.  Google Scholar

[14]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1935), 132.  doi: 10.1016/S0167-2789(97)00207-8.  Google Scholar

[15]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101.  doi: 10.1016/S0167-2789(96)00183-2.  Google Scholar

[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[3]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[15]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]