-
Previous Article
Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations
- CPAA Home
- This Issue
-
Next Article
Formal equivalence between normal forms of reversible and hamiltonian dynamical systems
Lifespan theorem and gap lemma for the globally constrained Willmore flow
1. | Department of Mathematics, Beijing Technology and Business University, Beijing 100048, China |
2. | College of Mathematics and Information Science, Henan Normal University, Henan, 453007 |
References:
[1] |
G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35.
doi: 10.1515/crll.1987.382.35. |
[2] |
H. Y. Jian and Y. N. Liu, Long-time existence of mean curvature flow with external force fields,, Pacific J. Math., 234 (2008), 311.
doi: 10.2140/pjm.2008.234.311. |
[3] |
E. Kuwert and R. Schätzle, The Willmore flow with small initial energy,, J. Differential Geom., 57 (2001), 409.
|
[4] |
E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional,, Comm. Anal. Geom., 10 (2002), 307.
|
[5] |
Y. N. Liu, Gradient flow for the Helfrich functional,, Chin. Ann. Math. B, 33 (2012), 931.
doi: 10.1007/s11401-012-0741-0. |
[6] |
J. McCoy, The surface area preserving mean curvature flow,, Asian J. Math., 7 (2003), 7.
|
[7] |
J. McCoy and G. Wheeler, Finite time singularities for the locally constrained willmore flow of surfaces, preprint,, \arXiv{1201.4541}., (). Google Scholar |
[8] |
J.McCoy, G. Wheeler and G. Williams, Lifespan theorem for constrained surface diffusion flows,, Math. Z., 269 (2011), 147.
doi: 10.1007/s00209-010-0720-7. |
[9] |
G. Simonett, The Willmore flow near spheres,, Differential Integral Equations, 14 (2001), 1005.
|
[10] |
G. Wheeler, "Fourth Order Geometric Evolution Equations,", Ph.D thesis, (2010).
doi: 10.1017/s0004972710001863. |
[11] |
G. Wheeler, Lifespan Theorem for simple constrained surface diffusion flows,, J. Math. Anal. Appl., 375 (2011), 685.
doi: 10.1016/j.jmaa.2010.09.043. |
[12] |
T. Willmore, "Riemannian Geometry,", Oxford University Press, (1993).
doi: 10.2307/3612154. |
show all references
References:
[1] |
G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35.
doi: 10.1515/crll.1987.382.35. |
[2] |
H. Y. Jian and Y. N. Liu, Long-time existence of mean curvature flow with external force fields,, Pacific J. Math., 234 (2008), 311.
doi: 10.2140/pjm.2008.234.311. |
[3] |
E. Kuwert and R. Schätzle, The Willmore flow with small initial energy,, J. Differential Geom., 57 (2001), 409.
|
[4] |
E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional,, Comm. Anal. Geom., 10 (2002), 307.
|
[5] |
Y. N. Liu, Gradient flow for the Helfrich functional,, Chin. Ann. Math. B, 33 (2012), 931.
doi: 10.1007/s11401-012-0741-0. |
[6] |
J. McCoy, The surface area preserving mean curvature flow,, Asian J. Math., 7 (2003), 7.
|
[7] |
J. McCoy and G. Wheeler, Finite time singularities for the locally constrained willmore flow of surfaces, preprint,, \arXiv{1201.4541}., (). Google Scholar |
[8] |
J.McCoy, G. Wheeler and G. Williams, Lifespan theorem for constrained surface diffusion flows,, Math. Z., 269 (2011), 147.
doi: 10.1007/s00209-010-0720-7. |
[9] |
G. Simonett, The Willmore flow near spheres,, Differential Integral Equations, 14 (2001), 1005.
|
[10] |
G. Wheeler, "Fourth Order Geometric Evolution Equations,", Ph.D thesis, (2010).
doi: 10.1017/s0004972710001863. |
[11] |
G. Wheeler, Lifespan Theorem for simple constrained surface diffusion flows,, J. Math. Anal. Appl., 375 (2011), 685.
doi: 10.1016/j.jmaa.2010.09.043. |
[12] |
T. Willmore, "Riemannian Geometry,", Oxford University Press, (1993).
doi: 10.2307/3612154. |
[1] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[2] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[3] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[4] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[5] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[6] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[7] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[8] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[9] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[10] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[11] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[12] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[13] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[14] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[15] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[16] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[17] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[18] |
Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050 |
[19] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[20] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]