• Previous Article
    Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations
  • CPAA Home
  • This Issue
  • Next Article
    Formal equivalence between normal forms of reversible and hamiltonian dynamical systems
March  2014, 13(2): 715-728. doi: 10.3934/cpaa.2014.13.715

Lifespan theorem and gap lemma for the globally constrained Willmore flow

1. 

Department of Mathematics, Beijing Technology and Business University, Beijing 100048, China

2. 

College of Mathematics and Information Science, Henan Normal University, Henan, 453007

Received  March 2013 Revised  July 2013 Published  October 2013

We study a fourth-order flow, which can be seen as a globally constrained Willmore flow. We obtain a lower bound on the lifespan of the smooth solution, which depends on the concentration of curvature for the initial surface and the constrained term. We also give a gap lemma for this flow, which is an important lemma in the study of the blowup analysis.
Citation: Yannan Liu, Linfen Cao. Lifespan theorem and gap lemma for the globally constrained Willmore flow. Communications on Pure & Applied Analysis, 2014, 13 (2) : 715-728. doi: 10.3934/cpaa.2014.13.715
References:
[1]

G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35.  doi: 10.1515/crll.1987.382.35.  Google Scholar

[2]

H. Y. Jian and Y. N. Liu, Long-time existence of mean curvature flow with external force fields,, Pacific J. Math., 234 (2008), 311.  doi: 10.2140/pjm.2008.234.311.  Google Scholar

[3]

E. Kuwert and R. Schätzle, The Willmore flow with small initial energy,, J. Differential Geom., 57 (2001), 409.   Google Scholar

[4]

E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional,, Comm. Anal. Geom., 10 (2002), 307.   Google Scholar

[5]

Y. N. Liu, Gradient flow for the Helfrich functional,, Chin. Ann. Math. B, 33 (2012), 931.  doi: 10.1007/s11401-012-0741-0.  Google Scholar

[6]

J. McCoy, The surface area preserving mean curvature flow,, Asian J. Math., 7 (2003), 7.   Google Scholar

[7]

J. McCoy and G. Wheeler, Finite time singularities for the locally constrained willmore flow of surfaces, preprint,, \arXiv{1201.4541}., ().   Google Scholar

[8]

J.McCoy, G. Wheeler and G. Williams, Lifespan theorem for constrained surface diffusion flows,, Math. Z., 269 (2011), 147.  doi: 10.1007/s00209-010-0720-7.  Google Scholar

[9]

G. Simonett, The Willmore flow near spheres,, Differential Integral Equations, 14 (2001), 1005.   Google Scholar

[10]

G. Wheeler, "Fourth Order Geometric Evolution Equations,", Ph.D thesis, (2010).  doi: 10.1017/s0004972710001863.  Google Scholar

[11]

G. Wheeler, Lifespan Theorem for simple constrained surface diffusion flows,, J. Math. Anal. Appl., 375 (2011), 685.  doi: 10.1016/j.jmaa.2010.09.043.  Google Scholar

[12]

T. Willmore, "Riemannian Geometry,", Oxford University Press, (1993).  doi: 10.2307/3612154.  Google Scholar

show all references

References:
[1]

G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35.  doi: 10.1515/crll.1987.382.35.  Google Scholar

[2]

H. Y. Jian and Y. N. Liu, Long-time existence of mean curvature flow with external force fields,, Pacific J. Math., 234 (2008), 311.  doi: 10.2140/pjm.2008.234.311.  Google Scholar

[3]

E. Kuwert and R. Schätzle, The Willmore flow with small initial energy,, J. Differential Geom., 57 (2001), 409.   Google Scholar

[4]

E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional,, Comm. Anal. Geom., 10 (2002), 307.   Google Scholar

[5]

Y. N. Liu, Gradient flow for the Helfrich functional,, Chin. Ann. Math. B, 33 (2012), 931.  doi: 10.1007/s11401-012-0741-0.  Google Scholar

[6]

J. McCoy, The surface area preserving mean curvature flow,, Asian J. Math., 7 (2003), 7.   Google Scholar

[7]

J. McCoy and G. Wheeler, Finite time singularities for the locally constrained willmore flow of surfaces, preprint,, \arXiv{1201.4541}., ().   Google Scholar

[8]

J.McCoy, G. Wheeler and G. Williams, Lifespan theorem for constrained surface diffusion flows,, Math. Z., 269 (2011), 147.  doi: 10.1007/s00209-010-0720-7.  Google Scholar

[9]

G. Simonett, The Willmore flow near spheres,, Differential Integral Equations, 14 (2001), 1005.   Google Scholar

[10]

G. Wheeler, "Fourth Order Geometric Evolution Equations,", Ph.D thesis, (2010).  doi: 10.1017/s0004972710001863.  Google Scholar

[11]

G. Wheeler, Lifespan Theorem for simple constrained surface diffusion flows,, J. Math. Anal. Appl., 375 (2011), 685.  doi: 10.1016/j.jmaa.2010.09.043.  Google Scholar

[12]

T. Willmore, "Riemannian Geometry,", Oxford University Press, (1993).  doi: 10.2307/3612154.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[3]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[4]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[5]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[6]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[7]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[8]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[9]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[12]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[13]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[14]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[15]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[16]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[17]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[18]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

[19]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[20]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]