Advanced Search
Article Contents
Article Contents

Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations

Abstract Related Papers Cited by
  • We provide a honesty theory of substochastic evolution families in real abstract state space, extending to an non-autonomous setting the result obtained for $C_0$-semigroups in our recent contribution [On perturbed substochastic semigroups in abstract state spaces, Z. Anal. Anwend. 30, 457--495, 2011]. The link with the honesty theory of perturbed substochastic semigroups is established. Application to non-autonomous linear Boltzmann equation is provided.
    Mathematics Subject Classification: Primary: 47D06; Secondary: 47D30, 47D07, 47N50.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Arlotti, The Cauchy problem for the linear Maxwell-Bolztmann equation, J. Differential Equations, 69 (1987), 166-184.doi: 10.1016/0022-0396(87)90115-X.


    L. Arlotti, A perturbation theorem for positive contraction semigroups on $L^1$-spaces with applications to transport equation and Kolmogorov's differential equations, Acta Appl. Math., 23 (1991), 129-144.doi: 10.1007/BF00048802.


    L. Arlotti and J. Banasiak, Strictly substochastic semigroups with application to conservative and shattering solution to fragmentation equation with mass loss, J. Math. Anal. Appl., 293 (2004), 673-720.doi: 10.1016/j.jmaa.2004.01.028.


    L. Arlotti and J. Banasiak, Nonautonomous fragmentation equation via evolution semigroups, Math. Meth. Appl. Sci., 33 (2010), 1201-1210.doi: 10.1002/mma.1282.


    L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract state spaces, Z. Anal. Anwend., 30 (2011), 457-495.doi: 0.4171/ZAA/1444.


    L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations, preprint, 2013, http://arxiv.org/abs/1303.7100.


    J. Banasiak and M. Lachowicz, Around the Kato generation theorem for semigroups, Studia Math, 179 (2007), 217-238.doi: 10.4064/sm179-3-2.


    J. Banasiak, Positivity in natural sciences, in "Multiscale Problems in the Life Sciences," Lecture Notes in Math., 1940, Springer, Berlin, (2008), 1-89.


    C. J. Batty and D. W. Robinson, Positive one-parameter semigroups on ordered Banach spaces, Acta Appl. Math., 1 (1984), 221-296.doi: 10.1007/BF02280855.


    C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Mathematical surveys and monographs 70, AMS, 1999.


    E. B. Davies, "Quantum Theory of Open Systems," Academic Press, 1976.


    E. B. Davies, Quantum dynamical semigroups and the neutron diffusion equation, Rep. Math. Phys., 11 (1977), 169-188.doi: 10.1016/0034-4877(77)90059-3.


    K. J. Engel and R. Nagel, "One-parameter Semigroups for Linear Evolution Equations," Springer, New-York, 2000.


    G. Frosali, C. van der Mee and F. Mugelli, A characterization theorem for the evolution semigroup generated by the sum of two unbounded operators, Math. Meth. Appl. Sci., 27 (2004), 669-685.doi: 10.1002/mma.495.


    A. Gulisashvili and J. A. van Casteren, "Non-autonomous Kato Classes and Feynman-Kac Propagators," World Scientific, Singapore, 2006.


    T. Kato, On the semi-groups generated by Kolmogoroff's differential equations, J. Math. Soc. Jap., 6 (1954), 1-15.doi: 10.2969/jmsj/00610001.


    V. Liskevich, H. Vogt and J. Voigt, Gaussian bounds for propagators perturbed by potentials, J. Funct. Anal., 238 (2006), 245-277.doi: 10.1016/j.jfa.2006.04.010.


    M. Mokhtar-Kharroubi, On perturbed positive $C_0$-semigroups on the Banach space of trace class operators, Infinite Dim. Anal. Quant. Prob. Related Topics, 11 (2008), 1-21.doi: 10.1142/S0219025708003130.


    M. Mokhtar-Kharroubi and J. Voigt, On honesty of perturbed substochastic $C_0$-semigroups in $L^1$-spaces, J. Operator Th, 64 (2010), 101-117.


    M. Mokhtar-Kharroubi, New generation theorems in transport theory, Afr. Mat., 22 (2011), 153-176.doi: 10.1007/s13370-011-0014-1.


    S. Monniaux and A. Rhandi, Semigroup methods to solve non-autonomous evolution equations, Semigroup Forum, 60 (2000), 122-134.doi: 10.1007/s002330010006.


    B. de Pagter, Ordered Banach spaces, in "One-parameter Semigroups" (Ph. Clément ed.), North-Holland, Amserdam, (1987), 265-279.


    F. Räbiger, A. Rhandi and R. Schnaubelt, Perturbation and an abstract characterization of evolution semigroups, J. Math. Anal. Appl., 198 (1996), 516-533.doi: 10.1006/jmaa.1996.0096.


    F. Räbiger, R. Schnaubelt, A. Rhandi and J. Voigt, Non-autonomous Miyadera perturbations, Differential Integral Equations, 13 (2000), 341-368.


    H. Thieme and J. Voigt, Stochastic semigroups: their construction by perturbation and approximation, in "Proceedings Positivity IV- Theory and Applications," Dresden (Germany), (2006), 135-146.


    C. van der Mee, Time-dependent kinetic equations with collision terms relatively bounded with respect to the collision frequency, Transport Theory and Statistical Physics, 30 (2001), 63-90.doi: 10.1081/TT-100104455.


    J. Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann., 229 (1977), 163-171.doi: 10.1007/BF01351602.


    J. Voigt, "Functional Analytic Treatment of the Initial Boundary Value Problem for Collisionless Gases," Habilitationsschrift, München, 1981.


    J. Voigt, On substochastic $C_0$-semigroups and their generators, Transp. Theory. Stat. Phys, 16 (1987), 453-466.doi: 10.1080/00411458708204302.


    J. Voigt, On resolvent positive operators and positive $C_0$-semigroups on $AL$-spaces, Semigroup Forum, 38 (1989), 263-266.doi: 10.1007/BF02573236.

  • 加载中

Article Metrics

HTML views() PDF downloads(60) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint