-
Previous Article
Positive solutions to involving Wolff potentials
- CPAA Home
- This Issue
-
Next Article
Lifespan theorem and gap lemma for the globally constrained Willmore flow
Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations
1. | Dipartimento di Ingegneria Civile, Università di Udine, via delle Scienze 208, 33100 Udine, Italy |
2. | Università degli, Studi di Torino and Collegio Carlo Alberto, Department of Statistics and Economics, Corso Unione Sovietica, 218/bis,, 10134 Torino, Italy |
3. | Université de Franche–Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 16, route de Gray, 25030 Besançon Cedex |
References:
[1] |
L. Arlotti, The Cauchy problem for the linear Maxwell-Bolztmann equation,, J. Differential Equations, 69 (1987), 166.
doi: 10.1016/0022-0396(87)90115-X. |
[2] |
L. Arlotti, A perturbation theorem for positive contraction semigroups on $L^1$-spaces with applications to transport equation and Kolmogorov's differential equations,, Acta Appl. Math., {23 (1991), 129.
doi: 10.1007/BF00048802. |
[3] |
L. Arlotti and J. Banasiak, Strictly substochastic semigroups with application to conservative and shattering solution to fragmentation equation with mass loss,, J. Math. Anal. Appl., {293 (2004), 673.
doi: 10.1016/j.jmaa.2004.01.028. |
[4] |
L. Arlotti and J. Banasiak, Nonautonomous fragmentation equation via evolution semigroups,, Math. Meth. Appl. Sci., 33 (2010), 1201.
doi: 10.1002/mma.1282. |
[5] |
L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract state spaces,, Z. Anal. Anwend., 30 (2011), 457.
doi: 0.4171/ZAA/1444. |
[6] |
L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations,, preprint, (2013). Google Scholar |
[7] |
J. Banasiak and M. Lachowicz, Around the Kato generation theorem for semigroups,, Studia Math, 179 (2007), 217.
doi: 10.4064/sm179-3-2. |
[8] |
J. Banasiak, Positivity in natural sciences,, in, (2008), 1. Google Scholar |
[9] |
C. J. Batty and D. W. Robinson, Positive one-parameter semigroups on ordered Banach spaces,, Acta Appl. Math., 1 (1984), 221.
doi: 10.1007/BF02280855. |
[10] |
C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical surveys and monographs 70, (1999). Google Scholar |
[11] |
E. B. Davies, "Quantum Theory of Open Systems,", Academic Press, (1976). Google Scholar |
[12] |
E. B. Davies, Quantum dynamical semigroups and the neutron diffusion equation,, Rep. Math. Phys., 11 (1977), 169.
doi: 10.1016/0034-4877(77)90059-3. |
[13] |
K. J. Engel and R. Nagel, "One-parameter Semigroups for Linear Evolution Equations,", Springer, (2000). Google Scholar |
[14] |
G. Frosali, C. van der Mee and F. Mugelli, A characterization theorem for the evolution semigroup generated by the sum of two unbounded operators,, Math. Meth. Appl. Sci., 27 (2004), 669.
doi: 10.1002/mma.495. |
[15] |
A. Gulisashvili and J. A. van Casteren, "Non-autonomous Kato Classes and Feynman-Kac Propagators,", World Scientific, (2006). Google Scholar |
[16] |
T. Kato, On the semi-groups generated by Kolmogoroff's differential equations,, J. Math. Soc. Jap., 6 (1954), 1.
doi: 10.2969/jmsj/00610001. |
[17] |
V. Liskevich, H. Vogt and J. Voigt, Gaussian bounds for propagators perturbed by potentials,, J. Funct. Anal., 238 (2006), 245.
doi: 10.1016/j.jfa.2006.04.010. |
[18] |
M. Mokhtar-Kharroubi, On perturbed positive $C_0$-semigroups on the Banach space of trace class operators,, Infinite Dim. Anal. Quant. Prob. Related Topics, 11 (2008), 1.
doi: 10.1142/S0219025708003130. |
[19] |
M. Mokhtar-Kharroubi and J. Voigt, On honesty of perturbed substochastic $C_0$-semigroups in $L^1$-spaces,, J. Operator Th, 64 (2010), 101. Google Scholar |
[20] |
M. Mokhtar-Kharroubi, New generation theorems in transport theory,, Afr. Mat., 22 (2011), 153.
doi: 10.1007/s13370-011-0014-1. |
[21] |
S. Monniaux and A. Rhandi, Semigroup methods to solve non-autonomous evolution equations,, Semigroup Forum, 60 (2000), 122.
doi: 10.1007/s002330010006. |
[22] |
B. de Pagter, Ordered Banach spaces,, in, (1987), 265. Google Scholar |
[23] |
F. Räbiger, A. Rhandi and R. Schnaubelt, Perturbation and an abstract characterization of evolution semigroups,, J. Math. Anal. Appl., 198 (1996), 516.
doi: 10.1006/jmaa.1996.0096. |
[24] |
F. Räbiger, R. Schnaubelt, A. Rhandi and J. Voigt, Non-autonomous Miyadera perturbations,, Differential Integral Equations, 13 (2000), 341.
|
[25] |
H. Thieme and J. Voigt, Stochastic semigroups: their construction by perturbation and approximation,, in, (2006), 135. Google Scholar |
[26] |
C. van der Mee, Time-dependent kinetic equations with collision terms relatively bounded with respect to the collision frequency,, Transport Theory and Statistical Physics, 30 (2001), 63.
doi: 10.1081/TT-100104455. |
[27] |
J. Voigt, On the perturbation theory for strongly continuous semigroups,, Math. Ann., 229 (1977), 163.
doi: 10.1007/BF01351602. |
[28] |
J. Voigt, "Functional Analytic Treatment of the Initial Boundary Value Problem for Collisionless Gases,", Habilitationsschrift, (1981). Google Scholar |
[29] |
J. Voigt, On substochastic $C_0$-semigroups and their generators,, Transp. Theory. Stat. Phys, 16 (1987), 453.
doi: 10.1080/00411458708204302. |
[30] |
J. Voigt, On resolvent positive operators and positive $C_0$-semigroups on $AL$-spaces,, Semigroup Forum, 38 (1989), 263.
doi: 10.1007/BF02573236. |
show all references
References:
[1] |
L. Arlotti, The Cauchy problem for the linear Maxwell-Bolztmann equation,, J. Differential Equations, 69 (1987), 166.
doi: 10.1016/0022-0396(87)90115-X. |
[2] |
L. Arlotti, A perturbation theorem for positive contraction semigroups on $L^1$-spaces with applications to transport equation and Kolmogorov's differential equations,, Acta Appl. Math., {23 (1991), 129.
doi: 10.1007/BF00048802. |
[3] |
L. Arlotti and J. Banasiak, Strictly substochastic semigroups with application to conservative and shattering solution to fragmentation equation with mass loss,, J. Math. Anal. Appl., {293 (2004), 673.
doi: 10.1016/j.jmaa.2004.01.028. |
[4] |
L. Arlotti and J. Banasiak, Nonautonomous fragmentation equation via evolution semigroups,, Math. Meth. Appl. Sci., 33 (2010), 1201.
doi: 10.1002/mma.1282. |
[5] |
L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract state spaces,, Z. Anal. Anwend., 30 (2011), 457.
doi: 0.4171/ZAA/1444. |
[6] |
L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations,, preprint, (2013). Google Scholar |
[7] |
J. Banasiak and M. Lachowicz, Around the Kato generation theorem for semigroups,, Studia Math, 179 (2007), 217.
doi: 10.4064/sm179-3-2. |
[8] |
J. Banasiak, Positivity in natural sciences,, in, (2008), 1. Google Scholar |
[9] |
C. J. Batty and D. W. Robinson, Positive one-parameter semigroups on ordered Banach spaces,, Acta Appl. Math., 1 (1984), 221.
doi: 10.1007/BF02280855. |
[10] |
C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical surveys and monographs 70, (1999). Google Scholar |
[11] |
E. B. Davies, "Quantum Theory of Open Systems,", Academic Press, (1976). Google Scholar |
[12] |
E. B. Davies, Quantum dynamical semigroups and the neutron diffusion equation,, Rep. Math. Phys., 11 (1977), 169.
doi: 10.1016/0034-4877(77)90059-3. |
[13] |
K. J. Engel and R. Nagel, "One-parameter Semigroups for Linear Evolution Equations,", Springer, (2000). Google Scholar |
[14] |
G. Frosali, C. van der Mee and F. Mugelli, A characterization theorem for the evolution semigroup generated by the sum of two unbounded operators,, Math. Meth. Appl. Sci., 27 (2004), 669.
doi: 10.1002/mma.495. |
[15] |
A. Gulisashvili and J. A. van Casteren, "Non-autonomous Kato Classes and Feynman-Kac Propagators,", World Scientific, (2006). Google Scholar |
[16] |
T. Kato, On the semi-groups generated by Kolmogoroff's differential equations,, J. Math. Soc. Jap., 6 (1954), 1.
doi: 10.2969/jmsj/00610001. |
[17] |
V. Liskevich, H. Vogt and J. Voigt, Gaussian bounds for propagators perturbed by potentials,, J. Funct. Anal., 238 (2006), 245.
doi: 10.1016/j.jfa.2006.04.010. |
[18] |
M. Mokhtar-Kharroubi, On perturbed positive $C_0$-semigroups on the Banach space of trace class operators,, Infinite Dim. Anal. Quant. Prob. Related Topics, 11 (2008), 1.
doi: 10.1142/S0219025708003130. |
[19] |
M. Mokhtar-Kharroubi and J. Voigt, On honesty of perturbed substochastic $C_0$-semigroups in $L^1$-spaces,, J. Operator Th, 64 (2010), 101. Google Scholar |
[20] |
M. Mokhtar-Kharroubi, New generation theorems in transport theory,, Afr. Mat., 22 (2011), 153.
doi: 10.1007/s13370-011-0014-1. |
[21] |
S. Monniaux and A. Rhandi, Semigroup methods to solve non-autonomous evolution equations,, Semigroup Forum, 60 (2000), 122.
doi: 10.1007/s002330010006. |
[22] |
B. de Pagter, Ordered Banach spaces,, in, (1987), 265. Google Scholar |
[23] |
F. Räbiger, A. Rhandi and R. Schnaubelt, Perturbation and an abstract characterization of evolution semigroups,, J. Math. Anal. Appl., 198 (1996), 516.
doi: 10.1006/jmaa.1996.0096. |
[24] |
F. Räbiger, R. Schnaubelt, A. Rhandi and J. Voigt, Non-autonomous Miyadera perturbations,, Differential Integral Equations, 13 (2000), 341.
|
[25] |
H. Thieme and J. Voigt, Stochastic semigroups: their construction by perturbation and approximation,, in, (2006), 135. Google Scholar |
[26] |
C. van der Mee, Time-dependent kinetic equations with collision terms relatively bounded with respect to the collision frequency,, Transport Theory and Statistical Physics, 30 (2001), 63.
doi: 10.1081/TT-100104455. |
[27] |
J. Voigt, On the perturbation theory for strongly continuous semigroups,, Math. Ann., 229 (1977), 163.
doi: 10.1007/BF01351602. |
[28] |
J. Voigt, "Functional Analytic Treatment of the Initial Boundary Value Problem for Collisionless Gases,", Habilitationsschrift, (1981). Google Scholar |
[29] |
J. Voigt, On substochastic $C_0$-semigroups and their generators,, Transp. Theory. Stat. Phys, 16 (1987), 453.
doi: 10.1080/00411458708204302. |
[30] |
J. Voigt, On resolvent positive operators and positive $C_0$-semigroups on $AL$-spaces,, Semigroup Forum, 38 (1989), 263.
doi: 10.1007/BF02573236. |
[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[3] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[4] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[5] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[6] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[7] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[8] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[9] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[10] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[11] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[12] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[13] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[14] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[15] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[16] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[17] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[18] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[19] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[20] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]