• Previous Article
    Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems
January  2014, 13(1): 75-95. doi: 10.3934/cpaa.2014.13.75

Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems

1. 

Department of Mathematics, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan 650500, China

2. 

School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, China

Received  May 2011 Revised  April 2012 Published  July 2013

In this paper, some existence theorems are obtained for periodic solutions of second order Hamiltonian systems under non-quadratic conditions by using the minimax principle. Our results unite, extend and improve those relative works in some known literature.
Citation: Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure and Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75
References:
[1]

E. A. B. Ailva, Subharmonic solutions for subquadratic Hamiltonian systems, J. Diff. Eqs., 115 (1995), 120-145. doi: 10.1006/jdeq.1995.1007.

[2]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems," Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8.

[3]

Y. Ding, "Variational Methods for Strongly Indefinite Problems," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

[4]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math., 81 (1985), 155-188. doi: 10.1007/BF01388776.

[5]

I. Ekeland, "Convexity Method in Hamiltonian Mechanics," Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.

[6]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal., 27 (1996), 821-839. doi: 10.1016/0362-546X(95)00077-9.

[7]

G. Fei, S. K. Kim and T. Wang, Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems, J. Math. Anal. Appl., 238 (1999), 216-233. doi: 10.1006/jmaa.1999.6527.

[8]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electronic Journal of Differential Equations, 2002 (2002), 1-12.

[9]

Q. Jiang and S. Ma, Periodic solution for a class of subquadratic second order Hamiltonian system, Jounal of Southwest China normal University (Natural Science), 32 (2007), 6-10.

[10]

Sophia Th. Kyritsi and Nikolaos S. Papageorgiou, On superquadratic periodic systems with indefinite linear part, Nonlinear Anal. TMA., 72 (2010), 946-954. doi: 10.1016/j.na.2009.07.035.

[11]

S. Luan and A. Mao, Periodic solutions for a class of non-autonomous Hamiltonian systems, Nonlinear Anal., 61 (2005), 1413-1426. doi: 10.1016/j.na.2005.01.108.

[12]

S. Luan and A. Mao, Periodic solutions of nonautonomous second order Hamiltonian systems, Acta Mathematica Sinica, English version, 21 (2005), 685-690. doi: 10.1007/s10114-005-0532-6.

[13]

S. Li and M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6-32. doi: 10.1006/jmaa.1995.1002.

[14]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7.

[15]

K. Perera, Critical groups of critical points produced by local linking with applications, Abstr. Appl. Anal., 3 (1998), 437-446. doi: 10.1155/S1085337598000657.

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," in: CBMS Regional Conf. Ser. in Math., 65, American Mathematical Society, Providence, RI, 1986.

[17]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203.

[18]

M. Schechter, Periodic non-autonomous second-order dynamical systems, J. Differential Equations, 223 (2006), 290-302. doi: 10.1016/j.jde.2005.02.022.

[19]

M. Schechter, "Minimax Systems and Critical Point Theory," Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4902-9.

[20]

C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (1998), 3263-3270. doi: 10.1090/S0002-9939-98-04706-6.

[21]

Z. L. Tao and C. L. Tang, Periodic and subharmonic solutions of second order Hamiltonian systems, J. Math. Anal. Appl., 293 (2004), 435-445. doi: 10.1016/j.jmaa.2003.11.007.

[22]

Z. L. Tao and C. L. Tang, Periodic solutions of nonquadratic second order Hamiltonian systems, (Chinese), Jounal of Southwest China normal University (Natural Science), 27 (2002), 841-846.

[23]

Z. L. Tao, S. Yan and S. L. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems, J. Math. Anal. Appl., 331 (2007), 152-158. doi: 10.1016/j.jmaa.2006.08.041.

[24]

Y. W. Ye and C. L. Tang, Periodic and subharmonic soltions for a class of superquadratic second order Hamiltonian systems, Nonlinear Anal., 71 (2009), 2298-2307. doi: 10.1016/j.na.2009.01.064.

show all references

References:
[1]

E. A. B. Ailva, Subharmonic solutions for subquadratic Hamiltonian systems, J. Diff. Eqs., 115 (1995), 120-145. doi: 10.1006/jdeq.1995.1007.

[2]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems," Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8.

[3]

Y. Ding, "Variational Methods for Strongly Indefinite Problems," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

[4]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math., 81 (1985), 155-188. doi: 10.1007/BF01388776.

[5]

I. Ekeland, "Convexity Method in Hamiltonian Mechanics," Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.

[6]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal., 27 (1996), 821-839. doi: 10.1016/0362-546X(95)00077-9.

[7]

G. Fei, S. K. Kim and T. Wang, Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems, J. Math. Anal. Appl., 238 (1999), 216-233. doi: 10.1006/jmaa.1999.6527.

[8]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electronic Journal of Differential Equations, 2002 (2002), 1-12.

[9]

Q. Jiang and S. Ma, Periodic solution for a class of subquadratic second order Hamiltonian system, Jounal of Southwest China normal University (Natural Science), 32 (2007), 6-10.

[10]

Sophia Th. Kyritsi and Nikolaos S. Papageorgiou, On superquadratic periodic systems with indefinite linear part, Nonlinear Anal. TMA., 72 (2010), 946-954. doi: 10.1016/j.na.2009.07.035.

[11]

S. Luan and A. Mao, Periodic solutions for a class of non-autonomous Hamiltonian systems, Nonlinear Anal., 61 (2005), 1413-1426. doi: 10.1016/j.na.2005.01.108.

[12]

S. Luan and A. Mao, Periodic solutions of nonautonomous second order Hamiltonian systems, Acta Mathematica Sinica, English version, 21 (2005), 685-690. doi: 10.1007/s10114-005-0532-6.

[13]

S. Li and M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6-32. doi: 10.1006/jmaa.1995.1002.

[14]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7.

[15]

K. Perera, Critical groups of critical points produced by local linking with applications, Abstr. Appl. Anal., 3 (1998), 437-446. doi: 10.1155/S1085337598000657.

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," in: CBMS Regional Conf. Ser. in Math., 65, American Mathematical Society, Providence, RI, 1986.

[17]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203.

[18]

M. Schechter, Periodic non-autonomous second-order dynamical systems, J. Differential Equations, 223 (2006), 290-302. doi: 10.1016/j.jde.2005.02.022.

[19]

M. Schechter, "Minimax Systems and Critical Point Theory," Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4902-9.

[20]

C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (1998), 3263-3270. doi: 10.1090/S0002-9939-98-04706-6.

[21]

Z. L. Tao and C. L. Tang, Periodic and subharmonic solutions of second order Hamiltonian systems, J. Math. Anal. Appl., 293 (2004), 435-445. doi: 10.1016/j.jmaa.2003.11.007.

[22]

Z. L. Tao and C. L. Tang, Periodic solutions of nonquadratic second order Hamiltonian systems, (Chinese), Jounal of Southwest China normal University (Natural Science), 27 (2002), 841-846.

[23]

Z. L. Tao, S. Yan and S. L. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems, J. Math. Anal. Appl., 331 (2007), 152-158. doi: 10.1016/j.jmaa.2006.08.041.

[24]

Y. W. Ye and C. L. Tang, Periodic and subharmonic soltions for a class of superquadratic second order Hamiltonian systems, Nonlinear Anal., 71 (2009), 2298-2307. doi: 10.1016/j.na.2009.01.064.

[1]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[2]

Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841

[3]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[4]

Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166

[5]

Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222

[6]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[7]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[8]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[9]

V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277

[10]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[11]

Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022

[12]

Paola Buttazzoni, Alessandro Fonda. Periodic perturbations of scalar second order differential equations. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 451-455. doi: 10.3934/dcds.1997.3.451

[13]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[14]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[15]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

[16]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[17]

Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4321-4345. doi: 10.3934/cpaa.2021162

[18]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure and Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

[19]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[20]

Zhibo Cheng, Xiaoxiao Cui. Positive periodic solution for generalized Basener-Ross model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4361-4382. doi: 10.3934/dcdsb.2020101

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]