-
Previous Article
A strongly singular parabolic problem on an unbounded domain
- CPAA Home
- This Issue
-
Next Article
Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations
Positive solutions to involving Wolff potentials
1. | School of Mathematical Sciences, Shandong Normal University, Jinan 250014 |
2. | School of Mathematical Sciences, Jiangsu Normal University, Xuzhou, 221116 |
References:
[1] |
C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalityes,, Potential Anal., 16 (2002), 347.
doi: 10.1023/A:1014845728367. |
[2] |
W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083.
doi: 10.3934/dcds.2011.30.1083. |
[3] |
W. Chen and C. Li, Regularity of solutions for a system of intgral equations,, Commun. Pure Appl. Anal., 4 (2005), 1.
|
[4] |
W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.
doi: 10.1090/S0002-9939-07-09232-5. |
[5] |
W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.
doi: 10.3934/dcds.2009.24.1167. |
[6] |
L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenoble), 33 (1983), 161.
|
[7] |
X. Huang, G. Hong and D. Li, Some symmetry results for integral equations involving Wolff potentials on bounded domains,, Nonlinear Anal., 75 (2012), 5601.
doi: 10.1016/j.na.2012.05.007. |
[8] |
X. Huang, D. Li and L. Wang, Symmetry and monotonicity of integral equation systems,, Nonlinear Anal., 12 (2011), 3515.
doi: 10.1016/j.nonrwa.2011.06.012. |
[9] |
X. Huang, D. Li and L. Wang, Radial symmetry results for systems of integral equations on $\Omega\in R^n$,, Manuscripta Math., 137 (2012), 317.
doi: 10.1007/s00229-011-0465-6. |
[10] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.
doi: 10.1090/S0002-9939-05-08411-X. |
[11] |
C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.
doi: 10.1007/s00526-006-0013-5. |
[12] |
T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.
doi: 10.1007/BF02392793. |
[13] |
T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (1992), 591.
|
[14] |
D. Labutin, Potential eatimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.
doi: 10.1215/S0012-7094-02-11111-9. |
[15] |
Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Anal., 35 (2011), 387.
doi: 10.1007/s11118-010-9218-5. |
[16] |
Y. Lei, C. Li and C. Ma, Decay estimation for positve solutions of a $\gamma$-Laplace equation,, Disc. Cont. Dyn. Sys., 30 (2011), 547.
doi: 10.3934/dcds.2011.30.547. |
[17] |
Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739.
doi: 10.1016/j.jde.2011.10.009. |
[18] |
Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Commun. Pure Appl. Anal., 10 (2011), 193.
doi: 10.3934/cpaa.2011.10.193. |
[19] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.
doi: 10.1137/080712301. |
[20] |
S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonlinear Anal.: Theory, 71 (2009), 1796.
doi: 10.1016/j.na.2009.01.014. |
[21] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676.
doi: 10.1016/j.aim.2010.07.020. |
[22] |
J. Maly, Wolff potential estimates of superminnimizers of Orilicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.
doi: 10.1007/s00229-003-0358-4. |
[23] |
N. Pfuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.
doi: 10.4007/annals.2008.168.859. |
[24] |
E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.
|
[25] |
Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, , Nonlinear Anal., 75 (2012), 1989.
doi: 10.1016/j.na.2011.09.051. |
show all references
References:
[1] |
C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalityes,, Potential Anal., 16 (2002), 347.
doi: 10.1023/A:1014845728367. |
[2] |
W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083.
doi: 10.3934/dcds.2011.30.1083. |
[3] |
W. Chen and C. Li, Regularity of solutions for a system of intgral equations,, Commun. Pure Appl. Anal., 4 (2005), 1.
|
[4] |
W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.
doi: 10.1090/S0002-9939-07-09232-5. |
[5] |
W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.
doi: 10.3934/dcds.2009.24.1167. |
[6] |
L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenoble), 33 (1983), 161.
|
[7] |
X. Huang, G. Hong and D. Li, Some symmetry results for integral equations involving Wolff potentials on bounded domains,, Nonlinear Anal., 75 (2012), 5601.
doi: 10.1016/j.na.2012.05.007. |
[8] |
X. Huang, D. Li and L. Wang, Symmetry and monotonicity of integral equation systems,, Nonlinear Anal., 12 (2011), 3515.
doi: 10.1016/j.nonrwa.2011.06.012. |
[9] |
X. Huang, D. Li and L. Wang, Radial symmetry results for systems of integral equations on $\Omega\in R^n$,, Manuscripta Math., 137 (2012), 317.
doi: 10.1007/s00229-011-0465-6. |
[10] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.
doi: 10.1090/S0002-9939-05-08411-X. |
[11] |
C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.
doi: 10.1007/s00526-006-0013-5. |
[12] |
T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.
doi: 10.1007/BF02392793. |
[13] |
T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (1992), 591.
|
[14] |
D. Labutin, Potential eatimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.
doi: 10.1215/S0012-7094-02-11111-9. |
[15] |
Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Anal., 35 (2011), 387.
doi: 10.1007/s11118-010-9218-5. |
[16] |
Y. Lei, C. Li and C. Ma, Decay estimation for positve solutions of a $\gamma$-Laplace equation,, Disc. Cont. Dyn. Sys., 30 (2011), 547.
doi: 10.3934/dcds.2011.30.547. |
[17] |
Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739.
doi: 10.1016/j.jde.2011.10.009. |
[18] |
Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Commun. Pure Appl. Anal., 10 (2011), 193.
doi: 10.3934/cpaa.2011.10.193. |
[19] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.
doi: 10.1137/080712301. |
[20] |
S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonlinear Anal.: Theory, 71 (2009), 1796.
doi: 10.1016/j.na.2009.01.014. |
[21] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676.
doi: 10.1016/j.aim.2010.07.020. |
[22] |
J. Maly, Wolff potential estimates of superminnimizers of Orilicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.
doi: 10.1007/s00229-003-0358-4. |
[23] |
N. Pfuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.
doi: 10.4007/annals.2008.168.859. |
[24] |
E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.
|
[25] |
Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, , Nonlinear Anal., 75 (2012), 1989.
doi: 10.1016/j.na.2011.09.051. |
[1] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[2] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[3] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[4] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[5] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[6] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[7] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[8] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[9] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[10] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[11] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[12] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[13] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[14] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[15] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[16] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[17] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[18] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[19] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[20] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]