March  2014, 13(2): 773-788. doi: 10.3934/cpaa.2014.13.773

Positive solutions to involving Wolff potentials

1. 

School of Mathematical Sciences, Shandong Normal University, Jinan 250014

2. 

School of Mathematical Sciences, Jiangsu Normal University, Xuzhou, 221116

Received  April 2013 Revised  July 2013 Published  October 2013

In this paper, we consider the weighted integral system involving Wolff potentials in $R^{n}$: \begin{eqnarray} u(x) = R_1(x)W_{\beta, \gamma}(\frac{u^pv^q(y)}{|y|^\sigma})(x), \\ v(x) = R_2(x)W_{\beta,\gamma}(\frac{v^pu^q(y)}{|y|^\sigma})(x). \end{eqnarray} where $0< R(x) \leq C$, $1 < \gamma \leq 2$, $0\leq \sigma < \beta \gamma$, $n-\beta\gamma > \sigma(\gamma-1)$, $\gamma^{*}-1=\frac{n\gamma}{n-\beta\gamma+\sigma}-1\geq 1$. Due to the weight $\frac{1}{|y|^\sigma}$, we need more complicated analytical techniques to handle the properties of the solutions. First, we use the method of regularity lifting to obtain the integrability for the solutions of this Wolff type integral equation. Next, we use the modifying and refining method of moving planes established by Chen and Li to prove the radial symmetry for the positive solutions of related integral equation. Based on these results, we obtain the decay rates of the solutions of (0.1) with $R_1(x)\equiv R_2(x)\equiv 1$ near infinity. We generalize the results in the related references.
Citation: Huan-Zhen Chen, Zhongxue Lü. Positive solutions to involving Wolff potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 773-788. doi: 10.3934/cpaa.2014.13.773
References:
[1]

C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalityes,, Potential Anal., 16 (2002), 347.  doi: 10.1023/A:1014845728367.  Google Scholar

[2]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[3]

W. Chen and C. Li, Regularity of solutions for a system of intgral equations,, Commun. Pure Appl. Anal., 4 (2005), 1.   Google Scholar

[4]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[5]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[6]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenoble), 33 (1983), 161.   Google Scholar

[7]

X. Huang, G. Hong and D. Li, Some symmetry results for integral equations involving Wolff potentials on bounded domains,, Nonlinear Anal., 75 (2012), 5601.  doi: 10.1016/j.na.2012.05.007.  Google Scholar

[8]

X. Huang, D. Li and L. Wang, Symmetry and monotonicity of integral equation systems,, Nonlinear Anal., 12 (2011), 3515.  doi: 10.1016/j.nonrwa.2011.06.012.  Google Scholar

[9]

X. Huang, D. Li and L. Wang, Radial symmetry results for systems of integral equations on $\Omega\in R^n$,, Manuscripta Math., 137 (2012), 317.  doi: 10.1007/s00229-011-0465-6.  Google Scholar

[10]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[11]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[12]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (1992), 591.   Google Scholar

[14]

D. Labutin, Potential eatimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[15]

Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Anal., 35 (2011), 387.  doi: 10.1007/s11118-010-9218-5.  Google Scholar

[16]

Y. Lei, C. Li and C. Ma, Decay estimation for positve solutions of a $\gamma$-Laplace equation,, Disc. Cont. Dyn. Sys., 30 (2011), 547.  doi: 10.3934/dcds.2011.30.547.  Google Scholar

[17]

Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739.  doi: 10.1016/j.jde.2011.10.009.  Google Scholar

[18]

Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Commun. Pure Appl. Anal., 10 (2011), 193.  doi: 10.3934/cpaa.2011.10.193.  Google Scholar

[19]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[20]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonlinear Anal.: Theory, 71 (2009), 1796.  doi: 10.1016/j.na.2009.01.014.  Google Scholar

[21]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[22]

J. Maly, Wolff potential estimates of superminnimizers of Orilicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.  doi: 10.1007/s00229-003-0358-4.  Google Scholar

[23]

N. Pfuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[24]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.   Google Scholar

[25]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, , Nonlinear Anal., 75 (2012), 1989.  doi: 10.1016/j.na.2011.09.051.  Google Scholar

show all references

References:
[1]

C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalityes,, Potential Anal., 16 (2002), 347.  doi: 10.1023/A:1014845728367.  Google Scholar

[2]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[3]

W. Chen and C. Li, Regularity of solutions for a system of intgral equations,, Commun. Pure Appl. Anal., 4 (2005), 1.   Google Scholar

[4]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955.  doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar

[5]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[6]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenoble), 33 (1983), 161.   Google Scholar

[7]

X. Huang, G. Hong and D. Li, Some symmetry results for integral equations involving Wolff potentials on bounded domains,, Nonlinear Anal., 75 (2012), 5601.  doi: 10.1016/j.na.2012.05.007.  Google Scholar

[8]

X. Huang, D. Li and L. Wang, Symmetry and monotonicity of integral equation systems,, Nonlinear Anal., 12 (2011), 3515.  doi: 10.1016/j.nonrwa.2011.06.012.  Google Scholar

[9]

X. Huang, D. Li and L. Wang, Radial symmetry results for systems of integral equations on $\Omega\in R^n$,, Manuscripta Math., 137 (2012), 317.  doi: 10.1007/s00229-011-0465-6.  Google Scholar

[10]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[11]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[12]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (1992), 591.   Google Scholar

[14]

D. Labutin, Potential eatimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[15]

Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Anal., 35 (2011), 387.  doi: 10.1007/s11118-010-9218-5.  Google Scholar

[16]

Y. Lei, C. Li and C. Ma, Decay estimation for positve solutions of a $\gamma$-Laplace equation,, Disc. Cont. Dyn. Sys., 30 (2011), 547.  doi: 10.3934/dcds.2011.30.547.  Google Scholar

[17]

Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739.  doi: 10.1016/j.jde.2011.10.009.  Google Scholar

[18]

Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Commun. Pure Appl. Anal., 10 (2011), 193.  doi: 10.3934/cpaa.2011.10.193.  Google Scholar

[19]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[20]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonlinear Anal.: Theory, 71 (2009), 1796.  doi: 10.1016/j.na.2009.01.014.  Google Scholar

[21]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[22]

J. Maly, Wolff potential estimates of superminnimizers of Orilicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.  doi: 10.1007/s00229-003-0358-4.  Google Scholar

[23]

N. Pfuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[24]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.   Google Scholar

[25]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, , Nonlinear Anal., 75 (2012), 1989.  doi: 10.1016/j.na.2011.09.051.  Google Scholar

[1]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[2]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[3]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[4]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[5]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[6]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[7]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[8]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[9]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[10]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[11]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[12]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[13]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[14]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[15]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[16]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[17]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[18]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[19]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[20]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]