• Previous Article
    Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux
  • CPAA Home
  • This Issue
  • Next Article
    Radial and non radial ground states for a class of dilation invariant fourth order semilinear elliptic equations on $R^n$
March  2014, 13(2): 823-833. doi: 10.3934/cpaa.2014.13.823

A BKM's criterion of smooth solution to the incompressible viscoelastic flow

1. 

Department of Applied Mathematics, South China Agricultural University, Guangzhou 510642, China

Received  May 2013 Revised  August 2013 Published  October 2013

In this paper, we study the regularity criterion of smooth solution to the Oldroyd model in $R^n(n=2,3)$. We obtain a Beale-Kato-Majda-type criterion in terms of vorticity in two and three space dimensions, namely, the solution $(u(t,x),F(t,x))$ does not develop singularity until $t=T$ provided that $\nabla \times u \in L^1(0,T;\dot{B}_{\infty,\infty}^0(R^n))$ in the case $n=2,3$.
Citation: Hua Qiu, Shaomei Fang. A BKM's criterion of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2014, 13 (2) : 823-833. doi: 10.3934/cpaa.2014.13.823
References:
[1]

J. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61.   Google Scholar

[2]

J. Y. Chemin, "Perfect Incompressible Fluids,", Oxford Lecture Ser. Math. Appl., (1998).   Google Scholar

[3]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids,, SIAM J. Math. Anal., 33 (2001), 84.   Google Scholar

[4]

Y. Du, C. Liu and Q. T. Zhang, A blow-up criterion for 3-D compressible viscoelasticity,, \arXiv{1202.3693}., ().   Google Scholar

[5]

W. N. E, T. J. Li and P. W. Zhang, Well-posedness for the dumbbell model of polymeric fluids,, Comm. Math. Phys., 248 (2004), 409.  doi: 10.1007/s00220-004-1102-y.  Google Scholar

[6]

J. S. Fan and T. Ozawa, Regularity criterion for the incompressible viscoelastic fluid system,, Houston J. Math., 37 (2011), 627.   Google Scholar

[7]

M. E. Gurtin, "An Introduction to Continuum Mechanics, Mathematics in Science and Engineering,", Academic Press, (1981).   Google Scholar

[8]

L. B. He and L. Xu, Global well-posedness for viscoelastic fluid system in bounded domains,, SIAM J. Math. Anal., 42 (2010), 2610.  doi: 10.1137/10078503X.  Google Scholar

[9]

X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, \arXiv{1102.1113v1}., ().   Google Scholar

[10]

X. P. Hu and D. H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179.  doi: 10.1016/j.jde.2010.03.027.  Google Scholar

[11]

X. P. Hu and D. H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200.  doi: 10.1016/j.jde.2010.10.017.  Google Scholar

[12]

H. Kozono,T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[13]

R. G. Larson, "The Structure and Rheology of Complex Fluids,", Oxford University Press, (1995).   Google Scholar

[14]

Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit,, Chin. Ann. Math. Ser. B, 27 (2006), 565.  doi: 10.1007/s11401-005-0041-z.  Google Scholar

[15]

Z. Lei, Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions,, \arXiv{1204.5763v1}., ().   Google Scholar

[16]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Rational Mech. Anal., 188 (2008), 371.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[17]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328.  doi: 10.1016/j.jde.2009.07.011.  Google Scholar

[18]

Z. Lei and Y. Wang, Global solutions for micro-macro models of polymeric fluids,, J. Differential Equations, 250 (2011), 3813.  doi: 10.1016/j.jde.2011.01.005.  Google Scholar

[19]

Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797.  doi: 10.1137/040618813.  Google Scholar

[20]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, Discrete Contin. Dyn. Syst., 25 (2009), 575.  doi: 10.3934/dcds.2009.25.575.  Google Scholar

[21]

F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Commun. Pure Appl. Math., 58 (2005), 1437.  doi: 10.1002/cpa.20074.  Google Scholar

[22]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Commun. Pure Appl. Math., 61 (2008), 539.  doi: 10.1002/cpa.20219.  Google Scholar

[23]

C. Liu and N. G. Walkington, An Eulerian description of fluids containing viscohyperelastic particles,, Arch. Rational Mech. Anal., 159 (2001), 229.  doi: 10.1007/s002050100158.  Google Scholar

[24]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, (2002).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[25]

N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows,, J. Math. Pures Appl., 96 (2011), 502.  doi: 10.1016/j.matpur.2011.04.008.  Google Scholar

[26]

N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows,, Invent. Math., 191 (2013), 427.  doi: 10.1007/s00222-012-0399-y.  Google Scholar

[27]

J. Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system,, Nonlinear Anal., 72 (2010), 3222.  doi: 10.1016/j.na.2009.12.022.  Google Scholar

[28]

J. Z. Qian, Initial boundary value problems for the compressible viscoelastic fluid,, J. Differential Equations, 250 (2011), 848.  doi: 10.1016/j.jde.2010.07.026.  Google Scholar

[29]

J. Z. Qian and Z. F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Rational Mech. Anal., 198 (2010), 835.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[30]

H. Qiu, Regularity criteria of smooth solution to the incompressible viscoelastic flow,, Comm. Pure Appl. Anal., 12 (2013), 2873.  doi: 10.3934/cpaa.2013.12.2873.  Google Scholar

[31]

Y. Z. Sun and Z. F. Zhang, Global well-posedness for the 2D micro-macro models in the bounded domain,, Comm. Math. Phys., 303 (2011), 361.  doi: 10.1007/s00220-010-1170-0.  Google Scholar

[32]

B. Q. Yuan, Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow,, Discrete Contin. Dyn. Syst., 33 (2013), 2211.  doi: 10.3934/dcds.2013.33.2211.  Google Scholar

[33]

B. Q. Yuan and R. Li, The blowup criterion of a smooth solution to the incompressible viscoelastic flow,, J. Math. Anal. Anal., 406 (2013), 158.  doi: 10.1016/j.jmaa.2013.04.055.  Google Scholar

[34]

T. Zhang and D. Y. Fang, Global well-posedness for the incompressible viscoelastic fluids in the critical $L^p$ framework,, \arXiv{1101.5864}., ().   Google Scholar

[35]

T. Zhang and D. Y. Fang, Global existence in critical spaces for incompressible viscoelastic fluids,, \arXiv{1101.5862}., ().   Google Scholar

show all references

References:
[1]

J. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61.   Google Scholar

[2]

J. Y. Chemin, "Perfect Incompressible Fluids,", Oxford Lecture Ser. Math. Appl., (1998).   Google Scholar

[3]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids,, SIAM J. Math. Anal., 33 (2001), 84.   Google Scholar

[4]

Y. Du, C. Liu and Q. T. Zhang, A blow-up criterion for 3-D compressible viscoelasticity,, \arXiv{1202.3693}., ().   Google Scholar

[5]

W. N. E, T. J. Li and P. W. Zhang, Well-posedness for the dumbbell model of polymeric fluids,, Comm. Math. Phys., 248 (2004), 409.  doi: 10.1007/s00220-004-1102-y.  Google Scholar

[6]

J. S. Fan and T. Ozawa, Regularity criterion for the incompressible viscoelastic fluid system,, Houston J. Math., 37 (2011), 627.   Google Scholar

[7]

M. E. Gurtin, "An Introduction to Continuum Mechanics, Mathematics in Science and Engineering,", Academic Press, (1981).   Google Scholar

[8]

L. B. He and L. Xu, Global well-posedness for viscoelastic fluid system in bounded domains,, SIAM J. Math. Anal., 42 (2010), 2610.  doi: 10.1137/10078503X.  Google Scholar

[9]

X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, \arXiv{1102.1113v1}., ().   Google Scholar

[10]

X. P. Hu and D. H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179.  doi: 10.1016/j.jde.2010.03.027.  Google Scholar

[11]

X. P. Hu and D. H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200.  doi: 10.1016/j.jde.2010.10.017.  Google Scholar

[12]

H. Kozono,T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[13]

R. G. Larson, "The Structure and Rheology of Complex Fluids,", Oxford University Press, (1995).   Google Scholar

[14]

Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit,, Chin. Ann. Math. Ser. B, 27 (2006), 565.  doi: 10.1007/s11401-005-0041-z.  Google Scholar

[15]

Z. Lei, Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions,, \arXiv{1204.5763v1}., ().   Google Scholar

[16]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Rational Mech. Anal., 188 (2008), 371.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[17]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328.  doi: 10.1016/j.jde.2009.07.011.  Google Scholar

[18]

Z. Lei and Y. Wang, Global solutions for micro-macro models of polymeric fluids,, J. Differential Equations, 250 (2011), 3813.  doi: 10.1016/j.jde.2011.01.005.  Google Scholar

[19]

Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797.  doi: 10.1137/040618813.  Google Scholar

[20]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, Discrete Contin. Dyn. Syst., 25 (2009), 575.  doi: 10.3934/dcds.2009.25.575.  Google Scholar

[21]

F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Commun. Pure Appl. Math., 58 (2005), 1437.  doi: 10.1002/cpa.20074.  Google Scholar

[22]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Commun. Pure Appl. Math., 61 (2008), 539.  doi: 10.1002/cpa.20219.  Google Scholar

[23]

C. Liu and N. G. Walkington, An Eulerian description of fluids containing viscohyperelastic particles,, Arch. Rational Mech. Anal., 159 (2001), 229.  doi: 10.1007/s002050100158.  Google Scholar

[24]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, (2002).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[25]

N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows,, J. Math. Pures Appl., 96 (2011), 502.  doi: 10.1016/j.matpur.2011.04.008.  Google Scholar

[26]

N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows,, Invent. Math., 191 (2013), 427.  doi: 10.1007/s00222-012-0399-y.  Google Scholar

[27]

J. Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system,, Nonlinear Anal., 72 (2010), 3222.  doi: 10.1016/j.na.2009.12.022.  Google Scholar

[28]

J. Z. Qian, Initial boundary value problems for the compressible viscoelastic fluid,, J. Differential Equations, 250 (2011), 848.  doi: 10.1016/j.jde.2010.07.026.  Google Scholar

[29]

J. Z. Qian and Z. F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Rational Mech. Anal., 198 (2010), 835.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[30]

H. Qiu, Regularity criteria of smooth solution to the incompressible viscoelastic flow,, Comm. Pure Appl. Anal., 12 (2013), 2873.  doi: 10.3934/cpaa.2013.12.2873.  Google Scholar

[31]

Y. Z. Sun and Z. F. Zhang, Global well-posedness for the 2D micro-macro models in the bounded domain,, Comm. Math. Phys., 303 (2011), 361.  doi: 10.1007/s00220-010-1170-0.  Google Scholar

[32]

B. Q. Yuan, Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow,, Discrete Contin. Dyn. Syst., 33 (2013), 2211.  doi: 10.3934/dcds.2013.33.2211.  Google Scholar

[33]

B. Q. Yuan and R. Li, The blowup criterion of a smooth solution to the incompressible viscoelastic flow,, J. Math. Anal. Anal., 406 (2013), 158.  doi: 10.1016/j.jmaa.2013.04.055.  Google Scholar

[34]

T. Zhang and D. Y. Fang, Global well-posedness for the incompressible viscoelastic fluids in the critical $L^p$ framework,, \arXiv{1101.5864}., ().   Google Scholar

[35]

T. Zhang and D. Y. Fang, Global existence in critical spaces for incompressible viscoelastic fluids,, \arXiv{1101.5862}., ().   Google Scholar

[1]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[2]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[3]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[4]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[5]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[6]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[7]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[8]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[9]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[10]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[11]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[12]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[13]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[14]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[15]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[16]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[17]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[18]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[19]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[20]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]