March  2014, 13(2): 835-858. doi: 10.3934/cpaa.2014.13.835

Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux

1. 

Department of Mathematics, University of Iowa, Iowa City, IA 52242

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

Received  June 2013 Revised  August 2013 Published  October 2013

This paper is concerned with the initial-boundary value problem for the generalized Benjamin-Bona-Mahony-Burgers equation in the half space $R_+$ \begin{eqnarray} u_t-u_{txx}-u_{xx}+f(u)_{x}=0,\quad t>0, x\in R_+,\\ u(0,x)=u_0(x)\to u_+, \quad as \ \ x\to +\infty,\\ u(t,0)=u_b. \end{eqnarray} Here $u(t,x)$ is an unknown function of $t>0$ and $x\in R_+$, $u_+\not=u_b$ are two given constant states and the nonlinear function $f(u)$ is assumed to be a non-convex function which has one or finitely many inflection points. In this paper, we consider $u_b
Citation: Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835
References:
[1]

H. P. Cui, The asymptotic behavior of solutions of an initial boundary value problem for the generalized Benjamin-Bona-Mahony equation,, Indian J. Pure Appl. Math., 43 (2012), 323.  doi: 10.1007/s13226-012-0020-5.  Google Scholar

[2]

E. Grenier and F. Rousset, Stability of one-dimensional boundary layers by using Green's functions,, Communications on Pure and Applied Mathematics, 54 (2001), 1343.  doi: DOI: 10.1002/cpa.10006.  Google Scholar

[3]

Y. Kagei and S. Kawashima, Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space,, Commun. Math. Phys., 266 (2006), 401.  doi: 10.1007/s00220-006-0017-1.  Google Scholar

[4]

S. Kawashima and A. Matsumura, Asymptotic stability of travelling wave solutions of systems for one-dimensional gas motion,, Commun. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[5]

S. Kawashima and A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations,, Commun. Pure Appl. Math., 47 (1994), 1547.  doi: 10.1002/cpa.3160471202.  Google Scholar

[6]

S. Kawashima, S. Nishibata and M. Nishikawa, Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane,, Discrete and Continuous Dynamical Systems, Supplement (2003), 469.   Google Scholar

[7]

S. Kawashima, S. Nishibata and M. Nishikawa, $L^p$ energy method for multi-dimensional viscous coonservation laws and applications to the stability of planar waves,, J. Hyperbolic Differential Equations, 1 (2004), 581.  doi: 10.1142/S0219891604000196.  Google Scholar

[8]

T. P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous conservation laws with boundary effect,, J. Differential Equations, 133 (1997), 296.  doi: 10.1006/jdeq.1996.3217.  Google Scholar

[9]

A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity,, Commun. Math. Phys., 165 (1994), 83.  doi: 10.1007/BF02099739.  Google Scholar

[10]

T. Nakamura, S. Nishibata and, T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differential Equations, 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[11]

M. Nishikawa, Convergence rates to the travelling wave for viscous conservation laws,, Funk. Ekvac., 41 (1998), 107.   Google Scholar

[12]

Y. Ueda, Asymptotic convergence toward stationary waves to the wave equation with a convection term in the half space,, Advances in Mathematical Sciences and Applications, 18 (2008), 329.   Google Scholar

[13]

H. Yin and H. J. Zhao, Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space,, Kinetic and Related Models, 2 (2009), 3144.   Google Scholar

[14]

H. Yin, H. J. Zhao and J. S. Kim, Convergence rates of solutions toward boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space,, J. Differential Equations, 245 (2008), 3144.  doi: 10.1016/j.jde.2007.12.012.  Google Scholar

[15]

C. J. Zhu, Asymptotic behavior of solutions for $p$-system with relaxation,, J. Differential Equations, 180 (2002), 273.  doi: 10.1006/jdeq.2001.4063.  Google Scholar

[16]

P. C. Zhu, Nonlinear Waves for the Compressible Navier-Stokes Equations in the Half Space,, the report for JSPS postdoctoral research at Kyushu University, (2001).   Google Scholar

show all references

References:
[1]

H. P. Cui, The asymptotic behavior of solutions of an initial boundary value problem for the generalized Benjamin-Bona-Mahony equation,, Indian J. Pure Appl. Math., 43 (2012), 323.  doi: 10.1007/s13226-012-0020-5.  Google Scholar

[2]

E. Grenier and F. Rousset, Stability of one-dimensional boundary layers by using Green's functions,, Communications on Pure and Applied Mathematics, 54 (2001), 1343.  doi: DOI: 10.1002/cpa.10006.  Google Scholar

[3]

Y. Kagei and S. Kawashima, Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space,, Commun. Math. Phys., 266 (2006), 401.  doi: 10.1007/s00220-006-0017-1.  Google Scholar

[4]

S. Kawashima and A. Matsumura, Asymptotic stability of travelling wave solutions of systems for one-dimensional gas motion,, Commun. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[5]

S. Kawashima and A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations,, Commun. Pure Appl. Math., 47 (1994), 1547.  doi: 10.1002/cpa.3160471202.  Google Scholar

[6]

S. Kawashima, S. Nishibata and M. Nishikawa, Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane,, Discrete and Continuous Dynamical Systems, Supplement (2003), 469.   Google Scholar

[7]

S. Kawashima, S. Nishibata and M. Nishikawa, $L^p$ energy method for multi-dimensional viscous coonservation laws and applications to the stability of planar waves,, J. Hyperbolic Differential Equations, 1 (2004), 581.  doi: 10.1142/S0219891604000196.  Google Scholar

[8]

T. P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous conservation laws with boundary effect,, J. Differential Equations, 133 (1997), 296.  doi: 10.1006/jdeq.1996.3217.  Google Scholar

[9]

A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity,, Commun. Math. Phys., 165 (1994), 83.  doi: 10.1007/BF02099739.  Google Scholar

[10]

T. Nakamura, S. Nishibata and, T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differential Equations, 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[11]

M. Nishikawa, Convergence rates to the travelling wave for viscous conservation laws,, Funk. Ekvac., 41 (1998), 107.   Google Scholar

[12]

Y. Ueda, Asymptotic convergence toward stationary waves to the wave equation with a convection term in the half space,, Advances in Mathematical Sciences and Applications, 18 (2008), 329.   Google Scholar

[13]

H. Yin and H. J. Zhao, Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space,, Kinetic and Related Models, 2 (2009), 3144.   Google Scholar

[14]

H. Yin, H. J. Zhao and J. S. Kim, Convergence rates of solutions toward boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space,, J. Differential Equations, 245 (2008), 3144.  doi: 10.1016/j.jde.2007.12.012.  Google Scholar

[15]

C. J. Zhu, Asymptotic behavior of solutions for $p$-system with relaxation,, J. Differential Equations, 180 (2002), 273.  doi: 10.1006/jdeq.2001.4063.  Google Scholar

[16]

P. C. Zhu, Nonlinear Waves for the Compressible Navier-Stokes Equations in the Half Space,, the report for JSPS postdoctoral research at Kyushu University, (2001).   Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[4]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[5]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[6]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[7]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[8]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[9]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[10]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[11]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[12]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[13]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[14]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[15]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[16]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[17]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[18]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[19]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[20]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]